Tag Archives: 000000

Eddington 1927: The Scale of Time

time-illusion

Reference: The Nature of the Physical World

This paper presents Chapter VIII (section 2) from the book THE NATURE OF THE PHYSICAL WORLD by A. S. EDDINGTON. The contents of this book are based on the lectures that Eddington delivered at the University of Edinburgh in January to March 1927.

The paragraphs of original material are accompanied by brief comments in color, based on the present understanding.  Feedback on these comments is appreciated.

The heading below links to the original materials.

.

The Scale of Time

The corridor of time stretches back through the past. We can have no conception how it all began. But at some stage we imagine the void to have been filled with matter rarified beyond the most tenuous nebula. The atoms sparsely strewn move hither and thither in formless disorder.

Behold the throne
Of Chaos and his dark pavilion spread
Wide on the wasteful deep.

Then slowly the power of gravitation is felt. Centres of condensation begin to establish themselves and draw in other matter. The first partitions are the star-systems such as our galactic system; sub-condensations separate the star-clouds or clusters; these divide again to give the stars.

The power of gravitation leads to condensation. Condensation is increase in quantization and inertia. Gravitation accomplishes this by bringing substance together into equilibrium.

Evolution has not reached the same development in all parts. We observe nebulae and clusters in different stages of advance. Some stars are still highly diffuse; others are concentrated like the sun with density greater than water; others, still more advanced, have shrunk to unimaginable density. But no doubt can be entertained that the genesis of the stars is a single process of evolution which has passed and is passing over a primordial distribution. Formerly it was freely speculated that the birth of a star was an individual event like the birth of an animal. From time to time two long extinct stars would collide and be turned into vapour by the energy of the collision; condensation would follow and life as a luminous body would begin all over again. We can scarcely affirm that this will never occur and that the sun is not destined to have a second or third innings; but it is clear from the various relations traced among the stars that the present stage of existence of the sidereal universe is the first innings. Groups of stars are found which move across the sky with common proper motion; these must have had a single origin and cannot have been formed by casual collisions. Another abandoned speculation is that lucid stars may be the exception, and that there may exist thousands of dead stars for every one that is seen shining. There are ways of estimating the total mass in interstellar space by its gravitational effect on the average speed of the stars; it is found that the lucid stars account for something approaching the total mass admissible and the amount left over for dark stars is very limited.

Stars are formed through condensation of primordial material. The speed of the star depends on its inertia, but gravitational effects may contribute to some modification.  

Biologists and geologists carry back the history of the earth some thousand million years. Physical evidence based on the rate of transmutation of radioactive substances seems to leave no escape from the conclusion that the older (Archaean) rocks in the earth’s crust were laid down 1200 million years ago. The sun must have been burning still longer, living (we now think) on its own matter which dissolves bit by bit into radiation. According to the theoretical time-scale, which seems best supported by astronomical evidence, the beginning of the sun as a luminous star must be dated five billion (5 . 1012) years ago. The theory which assigns this date cannot be trusted confidently, but it seems a reasonably safe conclusion that the sun’s age does not exceed this limit. The future is not so restricted and the sun may continue as a star of increasing feebleness for 50 or 500 billion years. The theory of sub-atomic energy has prolonged the life of a star from millions to billions of years, and we may speculate on processes of rejuvenescence which might prolong the existence of the sidereal universe from billions to trillions of years. But unless we can circumvent the second law of thermodynamics—which is as much as to say unless we can find cause for time to run backwards —the ultimate decay draws surely nearer and the world will at the last come to a state of uniform changelessness.

Does this prodigality of matter, of space, of time, find its culmination in Man?

I doubt if the universe will decay to a state of ultimate changelessness. There will always be moving patterns obeying the universal laws.

.

Eddington 1927: Time’s Arrow

Time arrow

Reference: The Book of Physics

Note: The original text is provided below.
Previous / Next

.

Summary

.

Comments

.

Original Text

The great thing about time is that it goes on. But this is an aspect of it which the physicist sometimes seems inclined to neglect. In the four-dimensional world considered in the last chapter the events past and future lie spread out before us as in a map. The events are there in their proper spatial and temporal relation; but there is no indication that they undergo what has been described as “the formality of taking place”, and the question of their doing or undoing does not arise. We see in the map the path from past to future or from future to past; but there is no signboard to indicate that it is a one-way street. Something must be added to the geometrical conceptions comprised in Minkowski’s world before it becomes a complete picture of the world as we know it. We may appeal to consciousness to suffuse the whole—to turn existence into happening, being into becoming. But first let us note that the picture as it stands is entirely adequate to represent those primary laws of Nature which, as we have seen, are indifferent to a direction of time. Objection has sometimes been felt to the relativity theory because its four-dimensional picture of the world seems to overlook the directed character of time. The objection is scarcely logical, for the theory is in this respect no better and no worse than its predecessors. The classical physicist has been using without misgiving a system of laws which do not recognise a directed time; he is shocked that the new picture should expose this so glaringly.

Without any mystic appeal to consciousness it is possible to find a direction of time on the four-dimensional map by a study of organization. Let us draw an arrow arbitrarily. If as we follow the arrow we find more and more of the random element in the state of the world, then the arrow is pointing towards the future; if the random element decreases the arrow points towards the past. That is the only distinction known to physics. This follows at once if our fundamental contention is admitted that the introduction of randomness is the only thing which cannot be undone.

I shall use the phrase “time’s arrow” to express this one-way property of time which has no analogue in space. It is a singularly interesting property from a philosophical standpoint. We must note that—

  1. It is vividly recognised by consciousness.
  2. It is equally insisted on by our reasoning faculty, which tells us that a reversal of the arrow would render the external world nonsensical.
  3. It makes no appearance in physical science except in the study of organization of a number of individuals.

Here the arrow indicates the direction of progressive increase of the random element.

Let us now consider in detail how a random element brings the irrevocable into the world. When a stone falls it acquires kinetic energy, and the amount of the energy is just that which would be required to lift the stone back to its original height. By suitable arrangements the kinetic energy can be made to perform this task; for example, if the stone is tied to a string it can alternately fall and re-ascend like a pendulum. But if the stone hits an obstacle its kinetic energy is converted into heat-energy. There is still the same quantity of energy, but even if we could scrape it together and put it through an engine we could not lift the stone back with it. What has happened to make the energy no longer serviceable?

Looking microscopically at the falling stone we see an enormous multitude of molecules moving downwards with equal and parallel velocities—an organized motion like the march of a regiment. We have to notice two things, the energy and the organization of the energy. To return to its original height the stone must preserve both of them.

When the stone falls on a sufficiently elastic surface the motion may be reversed without destroying the organization. Each molecule is turned backwards and the whole array retires in good order to the starting-point—

The famous Duke of York
With twenty thousand men,
He marched them up to the top of the hill
And marched them down again.

History is not made that way. But what usually happens at the impact is that the molecules suffer more or less random collisions and rebound in all directions. They no longer conspire to make progress in any one direction; they have lost their organization. Afterwards they continue to collide with one another and keep changing their directions of motion, but they never again find a common purpose. Organization cannot be brought about by continued shuffling. And so, although the energy remains quantitatively sufficient (apart from unavoidable leakage which we suppose made good), it cannot lift the stone back. To restore the stone we must supply extraneous energy which has the required amount of organization.

Here a point arises which unfortunately has no analogy in the shuffling of a pack of cards. No one (except a conjurer) can throw two half-shuffled packs into a hat and draw out one pack in its original order and one pack fully shuffled. But we can and do put partly disorganized energy into a steam-engine, and draw it out again partly as fully organized energy of motion of massive bodies and partly as heat-energy in a state of still worse disorganization. Organization of energy is negotiable, and so is the disorganization or random element; disorganization does not forever remain attached to the particular store of energy which first suffered it, but may be passed on elsewhere. We cannot here enter into the question why there should be a difference between the shuffling of energy and the shuffling of material objects; but it is necessary to use some caution in applying the analogy on account of this difference. As regards heat-energy the temperature is the measure of its degree of organization; the lower the temperature, the greater the disorganization.

.

Eddington 1927: Shuffling

thermo2

Reference: The Book of Physics

Note: The original text is provided below.
Previous / Next

.

Summary

.

Comments

.

Original Text

The modern outlook on the physical world is not composed exclusively of conceptions which have arisen in the last twenty-five years; and we have now to deal with a group of ideas dating far back in the last century which have not essentially altered since the time of Boltzmann. These ideas display great activity and development at the present time. The subject is relevant at this stage because it has a bearing on the deeper aspects of the problem of Time; but it is so fundamental in physical theory that we should be bound to deal with it sooner or later in any comprehensive survey.

If you take a pack of cards as it comes from the maker and shuffle it for a few minutes, all trace of the original systematic order disappears. The order will never come back however long you shuffle. Something has been done which cannot be undone, namely, the introduction of a random element in place of arrangement.

Illustrations may be useful even when imperfect, and therefore I have slurred over two points, which affect the illustration rather than the application which we are about to make. It was scarcely true to say that the shuffling cannot be undone. You can sort out the cards into their original order if you like. But in considering the shuffling which occurs in the physical world we are not troubled by a deus ex machina like you. I am not prepared to say how far the human mind is bound by the conclusions we shall reach. So I exclude you—at least I exclude that activity of your mind which you employ in sorting the cards. I allow you to shuffle them because you can do that absent-mindedly.

Secondly, it is not quite true that the original order never comes back. There is a ghost of a chance that someday a thoroughly shuffled pack will be found to have come back to the original order. That is because of the comparatively small number of cards in the pack. In our applications the units are so numerous that this kind of contingency can be disregarded.

We shall put forward the contention that—

Whenever anything happens which cannot be undone, it is always reducible to the introduction of a random element analogous to that introduced by shuffling.

Shuffling is the only thing which Nature cannot undo.

When Humpty Dumpty had a great fall—
All the king’s horses and all the king’s men
Cannot put Humpty Dumpty together again.

Something had happened which could not be undone. The fall could have been undone. It is not necessary to invoke the king’s horses and the king’s men; if there had been a perfectly elastic mat underneath, that would have sufficed. At the end of his fall Humpty Dumpty had kinetic energy which, properly directed, was just sufficient to bounce him back on to the wall again. But, the elastic mat being absent, an irrevocable event happened at the end of the fall—namely, the introduction of a random element into Humpty Dumpty.

But why should we suppose that shuffling is the only process that cannot be undone?

The Moving Finger writes; and, having writ,
Moves on: nor all thy Piety and Wit
Can lure it back to cancel half a Line.

When there is no shuffling, is the Moving Finger stayed? The answer of physics is unhesitatingly Yes. To judge of this we must examine those operations of Nature in which no increase of the random element can possibly occur. These fall into two groups. Firstly, we can study those laws of Nature which control the behaviour of a single unit. Clearly no shuffling can occur in these problems; you cannot take the King of Spades away from the pack and shuffle him. Secondly, we can study the processes of Nature in a crowd which is already so completely shuffled that there is no room for any further increase of the random element. If our contention is right, everything that occurs in these conditions is capable of being undone. We shall consider the first condition immediately; the second must be deferred until p. 78.

Any change occurring to a body which can be treated as a single unit can be undone. The laws of Nature admit of the undoing as easily as of the doing. The earth describing its orbit is controlled by laws of motion and of gravitation; these admit of the earth’s actual motion, but they also admit of the precisely opposite motion. In the same field of force the earth could retrace its steps; it merely depends on how it was started off. It may be objected that we have no right to dismiss the starting-off as an inessential part of the problem; it may be as much a part of the coherent scheme of Nature as the laws controlling the subsequent motion. Indeed, astronomers have theories explaining why the eight planets all started to move the same way round the sun. But that is a problem of eight planets, not of a single individual—a problem of the pack, not of the isolated card. So long as the earth’s motion is treated as an isolated problem, no one would dream of putting into the laws of Nature a clause requiring that it must go this way round and not the opposite.

There is a similar reversibility of motion in fields of electric and magnetic force. Another illustration can be given from atomic physics. The quantum laws admit of the emission of certain kinds and quantities of light from an atom; these laws also admit of absorption of the same kinds and quantities, i.e. the undoing of the emission. I apologize for an apparent poverty of illustration; it must be remembered that many properties of a body, e.g. temperature, refer to its constitution as a large number of separate atoms, and therefore the laws controlling temperature cannot be regarded as controlling the behaviour of a single individual.

The common property possessed by laws governing the individual can be stated more clearly by a reference to time. A certain sequence of states running from past to future is the doing of an event; the same sequence running from future to past is the undoing of it—because in the latter case we turn round the sequence so as to view it in the accustomed manner from past to future. So if the laws of Nature are indifferent as to the doing and undoing of an event, they must be indifferent as to a direction of time from past to future. That is their common feature, and it is seen at once when (as usual) the laws are formulated mathematically. There is no more distinction between past and future than between right and left. In algebraic symbolism, left is — x, right is +x; past is —t, future is +t. This holds for all laws of Nature governing the behaviour of non-composite individuals—the “primary laws”, as we shall call them. There is only one law of Nature—the second law of thermodynamics—which recognizes a distinction between past and future more profound than the difference of plus and minus. It stands aloof from all the rest. But this law has no application to the behaviour of a single individual, and as we shall see later its subject- matter is the random element in a crowd.

Whatever the primary laws of physics may say, it is obvious to ordinary experience that there is a distinction between past and future of a different kind from the distinction of left and right. In The Plattner Story H. G. Wells relates how a man strayed into the fourth dimension and returned with left and right interchanged. But we notice that this interchange is not the theme of the story; it is merely a corroborative detail to give an air of verisimilitude to the adventure. In itself the change is so trivial that even Mr. Wells cannot weave a romance out of it. But if the man had come back with past and future interchanged, then indeed the situation would have been lively. Mr. Wells in The Time-Machine and Lewis Carroll in Sylvie and Bruno give us a glimpse of the absurdities which occur when time runs backwards. If space is “looking-glassed” the world continues to make sense; but looking-glassed time has an inherent absurdity which turns the world-drama into the most nonsensical farce.

Now the primary laws of physics taken one by one all declare that they are entirely indifferent as to which way you consider time to be progressing, just as they are indifferent as to whether you view the world from the right or the left. This is true of the classical laws, the relativity laws, and even of the quantum laws. It is not an accidental property; the reversibility is inherent in the whole conceptual scheme in which these laws find a place. Thus the question whether the world does or does not “make sense” is outside the range of these laws. We have to appeal to the one outstanding law— the second law of thermodynamics—to put some sense into the world. It opens up a new province of knowledge, namely, the study of organization; and it is in connection with organization that a direction of time-flow and a distinction between doing and undoing appears for the first time.

.