Eddington 1927: The Scale of Time



This paper presents Chapter VIII (section 2) from the book THE NATURE OF THE PHYSICAL WORLD by A. S. EDDINGTON. The contents of this book are based on the lectures that Eddington delivered at the University of Edinburgh in January to March 1927.

The paragraphs of original material are accompanied by brief comments in color, based on the present understanding.  Feedback on these comments is appreciated.

The heading below links to the original materials.


The Scale of Time

The corridor of time stretches back through the past. We can have no conception how it all began. But at some stage we imagine the void to have been filled with matter rarified beyond the most tenuous nebula. The atoms sparsely strewn move hither and thither in formless disorder.

Behold the throne

Of Chaos and his dark pavilion spread

Wide on the wasteful deep.

Then slowly the power of gravitation is felt. Centres of condensation begin to establish themselves and draw in other matter. The first partitions are the star-systems such as our galactic system; sub-condensations separate the star-clouds or clusters; these divide again to give the stars.

The power of gravitation leads to condensation. Condensation is increase in quantization and inertia. Gravitation accomplishes this by bringing substance together into equilibrium.

Evolution has not reached the same development in all parts. We observe nebulae and clusters in different stages of advance. Some stars are still highly diffuse; others are concentrated like the sun with density greater than water; others, still more advanced, have shrunk to unimaginable density. But no doubt can be entertained that the genesis of the stars is a single process of evolution which has passed and is passing over a primordial distribution. Formerly it was freely speculated that the birth of a star was an individual event like the birth of an animal. From time to time two long extinct stars would collide and be turned into vapour by the energy of the collision; condensation would follow and life as a luminous body would begin all over again. We can scarcely affirm that this will never occur and that the sun is not destined to have a second or third innings; but it is clear from the various relations traced among the stars that the present stage of existence of the sidereal universe is the first innings. Groups of stars are found which move across the sky with common proper motion; these must have had a single origin and cannot have been formed by casual collisions. Another abandoned speculation is that lucid stars may be the exception, and that there may exist thousands of dead stars for every one that is seen shining. There are ways of estimating the total mass in interstellar space by its gravitational effect on the average speed of the stars; it is found that the lucid stars account for something approaching the total mass admissible and the amount left over for dark stars is very limited.

Stars are formed through condensation of primordial material. The speed of the star depends on its inertia, but gravitational effects may contribute to some modification.  

Biologists and geologists carry back the history of the earth some thousand million years. Physical evidence based on the rate of transmutation of radioactive substances seems to leave no escape from the conclusion that the older (Archaean) rocks in the earth’s crust were laid down 1200 million years ago. The sun must have been burning still longer, living (we now think) on its own matter which dissolves bit by bit into radiation. According to the theoretical time-scale, which seems best supported by astronomical evidence, the beginning of the sun as a luminous star must be dated five billion (5 . 1012) years ago. The theory which assigns this date cannot be trusted confidently, but it seems a reasonably safe conclusion that the sun’s age does not exceed this limit. The future is not so restricted and the sun may continue as a star of increasing feebleness for 50 or 500 billion years. The theory of sub-atomic energy has prolonged the life of a star from millions to billions of years, and we may speculate on processes of rejuvenescence which might prolong the existence of the sidereal universe from billions to trillions of years. But unless we can circumvent the second law of thermodynamics—which is as much as to say unless we can find cause for time to run backwards —the ultimate decay draws surely nearer and the world will at the last come to a state of uniform changelessness.

Does this prodigality of matter, of space, of time, find its culmination in Man?

I doubt if the universe will decay to a state of ultimate changelessness. There will always be moving patterns obeying the universal laws.


Both comments and trackbacks are currently closed.
%d bloggers like this: