This paper presents Chapter VIII (section 1) from the book THE NATURE OF THE PHYSICAL WORLD by A. S. EDDINGTON. The contents of this book are based on the lectures that Eddington delivered at the University of Edinburgh in January to March 1927.
The paragraphs of original material are accompanied by brief comments in color, based on the present understanding. Feedback on these comments is appreciated.
The heading below links to the original materials.
.
The Sidereal Universe
The largest telescopes reveal about a thousand million stars. Each increase in telescopic power adds to the number and we can scarcely set a limit to the multitude that must exist. Nevertheless there are signs of exhaustion, and it is clear that the distribution which surrounds us does not extend uniformly through infinite space. At first an increase in light-grasp by one magnitude brings into view three times as many stars; but the factor diminishes so that at the limit of faintness reached by the giant telescopes a gain of one magnitude multiplies the number of stars seen by only 1.8, and the ratio at that stage is rapidly decreasing. It is as though we are approaching a limit at which increase of power will not bring into view very many additional stars.
Attempts have been made to find the whole number of stars by a risky extrapolation of these counts, and totals ranging from 3000 to 30,000 millions are sometimes quoted. But the difficulty is that the part of the stellar universe which we mainly survey is a local condensation or star-cloud forming part of a much greater system. In certain directions in the sky our telescopes penetrate to the limits of the system, but in other directions the extent is too great for us to fathom. The Milky Way, which on a dark night forms a gleaming belt round the sky, shows the direction in which there lie stars behind stars until vision fails. This great flattened distribution is called the Galactic System. It forms a disc of thickness small compared to its areal extent. It is partly broken up into subordinate condensations, which are probably coiled in spiral form like the spiral nebulae which are observed in great numbers in the heavens. The centre of the galactic system lies somewhere in the direction of the constellation Sagittarius; it is hidden from us not only by great distance but also to some extent by tracts of obscuring matter (dark nebulosity) which cuts off the light of the stars behind.
We must distinguish then between our local star-cloud and the great galactic system of which it is a part. Mainly (but not exclusively) the star-counts relate to the local star-cloud, and it is this which the largest telescopes are beginning to exhaust. It too has a flattened form—flattened nearly in the same plane as the galactic system. If the galactic system is compared to a disc, the local star-cloud may be compared to a bun, its thickness being about one-third of its lateral extension. Its size is such that light takes at least 2000 years to cross from one side to the other; this measurement is necessarily rough because it relates to a vague condensation which is probably not sharply separated from other contiguous condensations. The extent of the whole spiral is of the order 100,000 light years. It can scarcely be doubted that the flattened form of the system is due to rapid rotation, and indeed there is direct evidence of strong rotational velocity; but it is one of the unexplained mysteries of evolution that nearly all celestial bodies have come to be endowed with fast rotation.
Amid this great population the sun is a humble unit. It is a very ordinary star about midway in the scale of brilliancy. We know of stars which give at least 10,000 times the light of the sun; we know also of stars which give 1/10,000 of its light. But those of inferior light greatly outnumber those of superior light. In mass, in surface temperature, in bulk, the sun belongs to a very common class of stars; its speed of motion is near the average; it shows none of the more conspicuous phenomena such as variability which excite the attention of astronomers. In the community of stars the sun corresponds to a respectable middle-class citizen. It happens to be quite near the centre of the local starcloud; but this apparently favoured position is discounted by the fact that the star-cloud itself is placed very eccentrically in relation to the galactic system, being in fact near the confines of it. We cannot claim to be at the hub of the universe.
The contemplation of the galaxy impresses us with the insignificance of our own little world; but we have to go still lower in the valley of humiliation. The galactic system is one among a million or more spiral nebulae. There seems now to be no doubt that, as has long been suspected, the spiral nebulae are “island universes” detached from our own. They too are great systems of stars—or systems in the process of developing into stars—built on the same disc-like plan. We see some of them edgeways and can appreciate the flatness of the disc; others are broadside on and show the arrangement of the condensations in the form of a double spiral. Many show the effects of dark nebulosity breaking into the regularity -and blotting out the starlight. In a few of the nearest spirals it is possible to detect the brightest of the stars individually; variable stars and novae (or “new stars”) are observed as in our own system. From the apparent magnitudes of the stars of recognisable character (especially the Cepheid variables) it is possible to judge the distance. The nearest spiral nebula is 850,000 light years away.
The galactic systems have disc-like structure because of a single axis of rotation. The atom may also have a single axis of rotation and a similar disc-like structure. In an atom the field-substance rotates forming a whirlpool. It becomes increasingly quantized as the center is approached.
From the small amount of data yet collected it would seem that our own nebula or galactic system is exceptionally large; it is even suggested that if the spiral nebulae are “islands” the galactic system is a “continent”. But we can scarcely venture to claim premier rank without much stronger evidence. At all events these other universes are aggregations of the order of 100 million stars.
Again the question raises itself, How far does this distribution extend? Not the stars this time but universes stretch one behind the other beyond sight. Does this distribution too come to an end? It may be that imagination must take another leap, envisaging super-systems which surpass the spiral nebulae as the spiral nebulae surpass the stars. But there is one feeble gleam of evidence that perhaps this time the summit of the hierarchy has been reached, and that the system of the spirals is actually the whole world. As has already been explained the modern view is that space is finite— finite though unbounded. In such a space light which has travelled an appreciable part of the way “round the world” is slowed down in its vibrations, with the result that all spectral lines are displaced towards the red. Ordinarily we interpret such a red displacement as signifying receding velocity in the line of sight. Now it is a striking fact that a great majority of the spirals which have been measured show large receding velocities often exceeding 1000 kilometres per second. There are only two serious exceptions, and these are the largest spirals which must be nearer to us than most of the others. On ordinary grounds it would be difficult to explain why these other universes should hurry away from us so fast and so unanimously. Why should they shun us like a plague? But the phenomenon is intelligible if what has really been observed is the slowing down of vibrations consequent on the light from these objects having travelled an appreciable part of the way round the world. On that theory the radius of space is of the order twenty times the average distance of the nebulae observed, or say 100 million light years. That leaves room for a few million spirals; but there is nothing beyond. There is no beyond—in spherical space “beyond” brings us back towards the earth from the opposite direction.*
*A very much larger radius of space (1011 light years) has recently been proposed by Hubble; but the basis of his calculation, though concerned with spiral nebulae, is different and to my mind unacceptable. It rests on an earlier theory of closed space proposed by Einstein which has generally been regarded as superseded. The theory given above (due to W. de Sitter) is, of course, very speculative, but it is the only clue we possess as to the dimensions of space.
The space is finite because the field-substance has limits. Beyond field-substance there is no substance. There is only emptiness. In this emptiness there is no space or time either. It is a challenge to conceive of this emptiness.
Light is a form of field-substance. It is, therefore, limited. As light approaches the limit it descends to the bottom of the electromagnetic spectrum. It does not exist in emptiness.
.