## The Limitation of Einstein’s Theory ##### Reference:Disturbance Theory

.

The Electromagnetic Spectrum happens to provide us with a universal range of physical substance. It presents to us a scale of inertia. Matter is a very special condition that exists at the upper end of this scale. The scale starts at the lower end with a theoretical state of emptiness of zero inertia.

#### The electromagnetic spectrum is a scale of inertia from emptiness to matter.

Like on any scale, the range of physical substance can best be understood from the reference point of zero inertia. However, this may create a great confusion because we are so used to looking at everything from the viewpoint of matter.

#### Our view of universe as “material” has been very narrow and upside down.

When we consider the substance as a whole range of field along with matter we start to have a much broader view. When we view from the theoretical state of EMPTINESS, instead of matter, the thinking reorients to right side up. We start to see the evolution of physical substance.

#### The physical substance evolving from emptiness is the correct view.

The fundamental substance appears as disturbance in emptiness.  We postulate this substance to be energy. This energy evolves as the electromagnetic field of increasing frequency. The electromagnetic field may be described in terms of disturbance levels (DL) as base 2 logarithm of frequency. For example, the disturbance level of yellow light is DL 49 because its frequency is 5.8 x 1014 (249) Hz. This makes it possible to conveniently map the whole range of physical substance.

#### We may map the whole range of physical substance as DISTURBANCE LEVELS.

The disturbance levels on the electromagnetic spectrum may be listed as follows (see appendix below for the method of calculation):

### Sun ………..………………………………….. 256.6

We may now compare this reference point to the reference point used in the theory of relativity by Einstein.

## Inertial Frame of Relativity

Einstein borrowed the inertial frame from Galileo and Newton and applied it to Relativity. This frame of reference views light (DL 49) from the reference of matter (DL 138.4 minimum). It is an upside down view.

#### The inertial frame of relativity views light from the reference of matter.

The speed of light is very close to the universal constant ‘c’, which is essentially a fixed ratio of space to time.  Einstein correctly assumed ‘c’ to be a universal constant. Because of this constant we can treat space-time as a single entity.

#### Space-time is a single property because time is related to space by ‘c’.

But even as a single entity, space-time scales up and down with disturbance levels, or inertia. The space-time at the level of matter is not the same space-time at the level of light. The inertia of light is many orders of magnitude lower than matter, but it is not zero because it has a disturbance level.

#### The inertia of light is not zero.

By saying that the “speed of light” is constant in all inertial frames, Einstein is basically assuming that the inertia of light is either zero, or insignifant to the inertial frames based on matter.

#### The theory of relativity ignores the inertia of light.

There is no doubt that Einstein’s theory of relativity has been very successful, but this success has occurred only where the phenomena has been material (DL > 138.4). For phenomemon of disturbance levels, such as, when considering quantum or electromagnetic phenomena, the inertia of light cannot be ignored.

#### The inertia of light cannot be ignored for electromagnetic and quantum phenomena.

An approach based on the zero inertia at the lower end of electromagnetic spectrum shall apply to the whole range of phenomena from electromagnetic to quantum to material.

#### The reference point of zero inertia at the lower end of the electromagnetic spectrum applies universally to the whole range of physical substance.

This is the reference point used by the Disturbance Theory.

.

## APPENDIX

If the frequency is ‘f’ then the disturbance level is “log f / log 2”.

The frequency associated with a mass object is calculated as follows:

De Broglie Equation,       λ = h/p,

where h is Plank’s constant, and p is momentum

Frequency,                       f = c/λ = (c/h) p = 4.528 x 1041 p

Disturbance level,          DL = (log f) / (log 2) = 138.4 + 3.322 log p

For earth,

ME = 5.972 x 1024 kg, and VE = 3 x 104 m/s

Hence, p = ME VE = 1.79 x 1029

Therefore, DL (earth) = 235.6

.

• haticeozcan2014  On November 8, 2017 at 4:31 AM
• vinaire  On November 8, 2017 at 8:47 AM
• freebeeing  On November 9, 2017 at 2:45 PM