Eddington 1927: Conclusion

Eddington 5

Reference: Eddington’s 1927 Book

This paper presents the CONCLUSION from the book THE NATURE OF THE PHYSICAL WORLD by A. S. EDDINGTON. The contents of this book are based on the lectures that Eddington delivered at the University of Edinburgh in January to March 1927.

The paragraphs of original material are accompanied by brief comments in color based on present understanding.  Feedback on these comments is appreciated.

The heading below links to the original materials.

.

Conclusion

A tide of indignation has been surging in the breast of the matter-of-fact scientist and is about to be unloosed upon us. Let us broadly survey the defence we can set up.

Science has been limited in its investigation to material-substance only. Through quantum theory science is being dragged into the investigation of field-substance; but it has still not fully accepted the reality of field-substance, and its quantization into material-substance. Science is nowhere near considering thought as a substance, and its quantization from abstract to concrete.

I suppose the most sweeping charge will be that I have been talking what at the back of my mind I must know is only a well-meaning kind of nonsense. I can assure you that there is a scientific part of me that has often brought that criticism during some of the later chapters. I will not say that I have been half-convinced, but at least I have felt a homesickness for the paths of physical science where there are more or less discernible handrails to keep us from the worst morasses of foolishness. But however much I may have felt inclined to tear up this part of the discussion and confine myself to my proper profession of juggling with pointer readings, I find myself holding to the main principles. Starting from aether, electrons and other physical machinery we cannot reach conscious man and render count of what is apprehended in his consciousness. Conceivably we might reach a human machine interacting by reflexes with its environment; but we cannot reach rational man morally responsible to pursue the truth as to aether and electrons or to religion. Perhaps it may seem unnecessarily portentous to invoke the latest developments of the relativity and quantum theories merely to tell you this; but that is scarcely the point. We have followed these theories because they contain the conceptions of modern science; and it is not a question of asserting a faith that science must ultimately be reconcilable with an idealistic view, but of examining how at the moment it actually stands in regard to it. I might sacrifice the detailed arguments of the last four chapters (perhaps marred by dialectic entanglement) if I could otherwise convey the significance of the recent change which has overtaken scientific ideals. The physicist now regards his own external world in a way which I can only describe as more mystical, though not less exact and practical, than that which prevailed some years ago, when it was taken for granted that nothing could be true unless an engineer could make a model of it. There was a time when the whole combination of self and environment which makes up experience seemed likely to pass under the dominion of a physics much more iron-bound than it is now. That overweening phase, when it was almost necessary to ask the permission of physics to call one’s soul one’s own, is past. The change gives rise to thoughts which ought to be developed. Even if we cannot attain to much clarity of constructive thought we can discern that certain assumptions, expectations or fears are no longer applicable.

The gradient of reasoning from the existence of physical universe (material-substance) back to consciousness (thought-substance) is missing. These missing gradients are as follows:

  1. The thought-substance quantizes from abstract to concrete, ultimately appearing as the field-substance.

  2. The field-substance quantized from wave to particle characteristics, ultimately appearing as material-substance.

The predictability of science has come under question because the above missing gradients.

Is it merely a well-meaning kind of nonsense for a physicist to affirm this necessity for an outlook beyond physics? It is worse nonsense to deny it. Or as that ardent relativist the Red Queen puts it, “You call that nonsense, but I’ve heard nonsense compared with which that would be as sensible as a dictionary”.

For if those who hold that there must be a physical basis for everything hold that these mystical views are nonsense, we may ask—What then is the physical basis of nonsense? The “problem of nonsense” touches the scientist more nearly than any other moral problem. He may regard the distinction of good and evil as too remote to bother about; but the distinction of sense and nonsense, of valid and invalid reasoning, must be accepted at the beginning of every scientific inquiry. Therefore it may well be chosen for examination as a test case.

For some reason science backs off from examining thought. Maybe it is fixated on material being the only substance. It looks at the field-substance as energy, but the concept of energy, in Newtonian mechanics, is associated with material substance.

If the brain contains a physical basis for the nonsense which it thinks, this must be some kind of configuration of the entities of physics—not precisely a chemical secretion, but not essentially different from that kind of product. It is as though when my brain says 7 times 8 are 56 its machinery is manufacturing sugar, but when it says 7 times 8 are 6$ the machinery has gone wrong and produced chalk. But who says the machinery has gone wrong? As a physical machine the brain has acted according to the unbreakable laws of physics; so why stigmatise its action? This discrimination of chemical products as good or evil has no parallel in chemistry. We cannot assimilate laws of thought to natural laws; they are laws which ought to be obeyed, not laws which must be obeyed; and the physicist must  accept laws of thought before he accepts natural law. “Ought” takes us outside chemistry and physics. It concerns something which wants or esteems sugar, not chalk, sense, not nonsense. A physical machine cannot esteem or want anything; whatever is fed into it it will chaw up according to the laws of its physical machinery. That which in the physical world shadows the nonsense in the mind affords no ground for its condemnation. In a world of aether and electrons we might perhaps encounter nonsense; we could not encounter damned nonsense.

The laws of thought may be based on electric potentials much like those in an electronic computer.

The most plausible physical theory of correct reasoning would probably run somewhat as follows. By reasoning we are sometimes able to predict events afterwards confirmed by observation; the mental processes follow a sequence ending in a conception which anticipates a subsequent perception. We may call such a chain of mental states “successful reasoning”— intended as a technical classification without any moral implications involving the awkward word “ought”. We can examine what are the common characteristics of various pieces of successful reasoning. If we apply this analysis to the mental aspects of the reasoning we obtain laws of logic; but presumably the analysis could also be applied to the physical constituents of the brain. It is not unlikely that a distinctive characteristic would be found in the physical processes in the brain-cells which accompany successful reasoning, and this would constitute “the physical basis of success.”

But we do not use reasoning power solely to predict observational events, and the question of success (as above defined) does not always arise. Nevertheless if such reasoning were accompanied by the product which I have called “the physical basis of success” we should naturally assimilate it to successful reasoning.

And so if I persuade my materialist opponent to withdraw the epithet “damned nonsense” as inconsistent with his own principles he is still entitled to allege that my brain in evolving these ideas did not contain the physical basis of success. As there is some danger of our respective points of view becoming mixed up, I must make clear my contention:

(a) If I thought like my opponent I should not worry about the alleged absence of a physical basis of success in my reasoning, since it is not obvious why this should be demanded when we are not dealing with observational predictions.

(b) As I do not think like him, I am deeply perturbed by the allegation; because I should consider it to be the outward sign that the stronger epithet (which is not inconsistent with my principles) is applicable.

I think that the “success” theory of reasoning will not be much appreciated by the pure mathematician. For him reasoning is a heaven-sent faculty to be enjoyed remote from the fuss of external Nature. It is heresy to suggest that the status of his demonstrations depends on the fact that a physicist now and then succeeds in predicting results which accord with observation. Let the external world behave as irrationally as it will, there will remain undisturbed a corner of knowledge where he may happily hunt for the roots of the Riemann- Zeta function. The “success” theory naturally justifies itself to the physicist. He employs this type of activity of the brain because it leads him to what he wants—a verifiable prediction as to the external world—and for that reason he esteems it. Why should not the theologian employ and esteem one of the mental processes of unreason which leads to what he wants—an assurance of future bliss, or a Hell to frighten us into better behaviour? Understand that I do not encourage theologians to despise reason; my point is that they might well do so if it had no better justification than the “success” theory.

Reasoning in physics does require data. It cannot exist without data as assumed by the pure mathematician. Reasoning goes wrong when relevant data is missing or irrelevant data is considered. Given proper data, the reasoning shall take the same precise route. This is the “physical basis of success”.

And so my own concern lest I should have been talking nonsense ends in persuading me that I have to reckon with something that could not possibly be found in the physical world.

Another charge launched against these lectures may be that of admitting some degree of supernaturalism, which in the eyes of many is the same thing as superstition. In so far as supernaturalism is associated with the denial of strict causality (p. 309) I can only answer that that is what the modern scientific development of the quantum theory brings us to. But probably the more provocative part of our scheme is the role allowed to mind and consciousness. Yet I suppose that our

adversary admits consciousness as a fact and he is aware that but for knowledge by consciousness scientific investigation could not begin. Does he regard consciousness as supernatural? Then it is he who is admitting the supernatural. Or does he regard it as part of Nature? So do we. We treat it in what seems to be its obvious position as the avenue of approach to the reality and significance of the world, as it is the avenue of approach to all scientific knowledge of the world. Or does he regard consciousness as something which unfortunately has to be admitted but which it is scarcely polite to mention? Even so we humour him. We have associated consciousness with a background untouched in the physical survey of the world and have given the physicist a domain where he can go round in cycles without ever encountering anything to bring a blush to his cheek. Here a realm of natural law is secured to him covering all that he has ever effectively occupied. And indeed it has been quite as much the purpose of our discussion to secure such a realm where scientific method may work unhindered, as to deal with the nature of that part of our experience which lies beyond it. This defence of scientific method may not be superfluous. The accusation is often made that, by its neglect of aspects of human experience evident to a wider culture, physical science has been overtaken by a kind of madness leading it sadly astray. It is part of our contention that there exists a wide field of research for which the methods of physics suffice, into which the introduction of these other aspects would be entirely mischievous.

It is not true that when quantum theory is completed it would still deny causality. At the moment we are looking at an incomplete quantum theory that is using material-substance as its reference, and does not recognize quantization of field-substance.

Consciousness appears to be supernatural only because we do not understand its nature. But the scientific method can take us deep into understanding the nature of consciousness.

A besetting temptation of the scientific apologist for religion is to take some of its current expressions and after clearing away crudities of thought (which must necessarily be associated with anything adapted to the everyday needs of humanity) to water down the meaning until little is left that could possibly be in opposition to science or to anything else. If the revised interpretation had first been presented no one would have raised vigorous criticism; on the other hand no one would have been stirred to any great spiritual enthusiasm. It is the less easy to steer clear of this temptation because it is necessarily a question of degree. Clearly if we are to extract from the tenets of a hundred different sects any coherent view to be defended some at least of them must be submitted to a watering-down process. I do not know if the reader will acquit me of having succumbed to this temptation in the passages where I have touched upon religion; but I have tried to make a fight against it. Any apparent failure has probably arisen in the following way. We have been concerned with the borderland of the material and spiritual worlds as approached from the side of the former. From this side all that we could assert of the spiritual world would be insufficient to justify even the palest brand of theology that is not too emaciated to have any practical influence on man’s outlook. But the spiritual world as understood in any serious religion is by no means a colourless domain. Thus by calling this hinterland of science a spiritual world I may seem to have begged a vital question, whereas I intended only a provisional identification. To make it more than provisional an approach must be made from the other side. I am unwilling to play the amateur theologian, and examine this approach in detail. I have, however, pointed out that the attribution of religious colour to the domain must rest on inner conviction; and I think we should not deny validity to certain inner convictions, which seem parallel with the unreasoning trust in reason which is at the basis of mathematics, with an innate sense of the fitness of things which is at the basis of the science of the physical world, and with an irresistible sense of incongruity which is at the basis of the justification of humour. Or perhaps it is not so much a question of asserting the validity of these convictions as of recognising their function as an essential part of our nature. We do not defend the validity of seeing beauty in a natural landscape; we accept with gratitude the fact that we are so endowed as to see it that way.

To evaluate religion we need to take a universal viewpoint that is completely unbiased.

It will perhaps be said that the conclusion to be drawn from these arguments from modern science, is that religion first became possible for a reasonable scientific man about the year 1927. If we must consider that tiresome person, the consistently reasonable man, we may point out that not merely religion but most of the ordinary aspects of life first became possible for him in that year. Certain common activities (e.g. falling in love) are, I fancy, still forbidden him. If our expectation should prove well founded that 1927 has seen the final overthrow of strict causality by Heisenberg, Bohr, Born and others, the year will certainly rank as one of the greatest epochs in the development of scientific philosophy. But seeing that before this enlightened era men managed to persuade themselves that they had to mould their own material future notwithstanding the yoke of strict causality, they might well use the same modus vivendi in religion.

We do not have to deny strict causality to become religious. Properly understood, religion could be found to follow strict causality, except for an entrance point.

This brings us to consider the view often pontifically asserted that there can be no conflict between science and religion because they belong to altogether different realms of thought. The implication is that discussions such as we have been pursuing are superfluous. But it seems to me rather that the assertion challenges this kind of discussion—to see how both realms of thought can be associated independently with our existence. Having seen something of the way in which the scientific realm of thought has constituted itself out of a self-closed cyclic scheme we are able to give a guarded assent. The conflict will not be averted unless both sides confine themselves to their proper domain; and a discussion which enables us to reach a better understanding as to the boundary should be a contribution towards a state of peace. There is still plenty of opportunity for frontier difficulties; a particular illustration will show this.

A belief not by any means confined to the more dogmatic adherents of religion is that there is a future non-material existence in store for us. Heaven is nowhere in space, but it is in time. (All the meaning of the belief is bound up with the word future; there is no comfort in an assurance of bliss in some former state of existence.) On the other hand the scientist declares that time and space are a single continuum, and the modern idea of a Heaven in time but not in space is in this respect more at variance with science than the pre- Copernican idea of a Heaven above our heads. The question I am now putting is not whether the theologian or the scientist is right, but which is trespassing on the domain of the other? Cannot theology dispose of the destinies of the human soul in a non-material way without trespassing on the realm of science? Cannot science assert its conclusions as to the geometry of the space-time continuum without trespassing on the realm of theology? According to the assertion above science and theology can make what mistakes they please provided that they make them in their own territory ; they cannot quarrel if they keep to their own realms. But it will require a skilful drawing of the boundary line to frustrate the development of a conflict here.*

*This difficulty is evidently connected with the dual entry of time into our experience to which I have so often referred.

The philosophic trend of modern scientific thought differs markedly from the views of thirty years ago. Can we guarantee that the next thirty years will not see another revolution, perhaps even a complete reaction? We may certainly expect great changes, and by that time many things will appear in a new aspect. That is one of the difficulties in the relations of science and philosophy; that is why the scientist as a rule pays so little heed to the philosophical implications of his own discoveries. By dogged endeavour he is slowly and tortuously advancing to purer and purer truth; but his ideas seem to zigzag in a manner most disconcerting to the onlooker. Scientific discovery is like the fitting together of the pieces of a great jig-saw puzzle; a revolution of science does not mean that the pieces already arranged and interlocked have to be dispersed; it means that in fitting on fresh pieces we have had to revise our impression of what the puzzle-picture is going to be like. One day you ask the scientist how he is getting on; he replies, “Finely. I have very nearly finished this piece of blue sky.” Another day you ask how the sky is progressing and are told, “I have added a lot more, but it was sea, not sky; there’s a boat floating on the top of it”. Perhaps next time it will have turned out to be a parasol upside down ; but our friend is still enthusiastically delighted with the progress he is making. The scientist has his guesses as to how the finished picture will work out; he depends largely on these in his search for other pieces to fit; but his guesses are modified from time to time by unexpected developments as the fitting pro- ceeds. These revolutions of thought as to the final picture do not cause the scientist to lose faith in his handiwork, for he is aware that the completed portion is growing steadily. Those who look over his shoulder and use the present partially developed picture for purposes outside science, do so at their own risk.

The lack of finality of scientific theories would be a very serious limitation of our argument, if we had staked much on their permanence. The religious reader may well be content that I have not offered him a God revealed by the quantum theory, and therefore liable to be swept away in the next scientific revolution. It is not so much the particular form that scientific theories have now taken—the conclusions which we believe we have proved—as the movement of thought behind them that concerns the philosopher. Our eyes once opened, we may pass on to a yet newer outlook on the world, but we can never go back to the old outlook.

The lack of finality must apply to both scientific theories and religion. The God of religion is the Unknown laws of science.

If the scheme of philosophy which we now rear on the scientific advances of Einstein, Bohr, Rutherford and others is doomed to fall in the next thirty years, it is not to be laid to their charge that we have gone astray. Like the systems of Euclid, of Ptolemy, of Newton, which have served their turn, so the systems of Einstein and Heisenberg may give way to some fuller realisation of the world. But in each revolution of scientific thought new words are set to the old music, and that which has gone before is not destroyed but refocussed. Amid all our faulty attempts at expression the kernel of scientific truth steadily grows; and of this truth it may be said— The more it changes, the more it remains the same thing.

.

Both comments and trackbacks are currently closed.
%d bloggers like this: