## Eddington 1927: The Principle of Indeterminacy

##### Reference: Eddington’s 1927 Book

This paper presents Chapter XIV (section 5) from the book THE NATURE OF THE PHYSICAL WORLD by A. S. EDDINGTON. The contents of this book are based on the lectures that Eddington delivered at the University of Edinburgh in January to March 1927.

The paragraphs of original material are accompanied by brief comments in color, based on the present understanding.  Feedback on these comments is appreciated.

The heading below links to the original materials.

.

## The Principle of Indeterminacy

Thus far we have shown that modern physics is drifting away from the postulate that the future is predetermined, ignoring it rather than deliberately rejecting it. With the discovery of the Principle of Indeterminacy (p. 220) its attitude has become more definitely hostile.

Let us take the simplest case in which we think we can predict the future. Suppose that we have a particle with known position and velocity at the present instant. Assuming that nothing interferes with it we can predict the position at a subsequent instant. (Strictly the non- interference would be a subject for another prediction, but to simplify matters we shall concede it.) It is just this simple prediction which the principle of indeterminacy expressly forbids. It states that we cannot know accurately both the velocity and position of a particle at the present instant.

The principle of indeterminacy does not take quantization into account.

At first sight there seems to be an inconsistency. There is no limit to the accuracy with which we may know the position, provided that we do not want to know the velocity also. Very well; let us make a highly accurate determination of position now, and after waiting a moment make another highly accurate determination of position. Comparing the two accurate positions we compute the accurate velocity—and snap our fingers at the principle of indeterminacy. This velocity, however, is of no use for prediction, because in making the second accurate determination of position we have rough-handled the particle so much that it no longer has the velocity we calculated. It is a purely retrospective velocity. The velocity does not exist in the present tense but in the future perfect; it never exists, it never will exist, but a time may come when it will have existed. There is no room for it in Fig. 4 which contains an Absolute Future and an Absolute Past but not an Absolute Future Perfect.

The velocity which we attribute to a particle now can be regarded as an anticipation of its future positions. To say that it is unknowable (except with a certain degree of inaccuracy) is to say that the future cannot be anticipated. Immediately the future is accomplished, so that it is no longer an anticipation, the velocity becomes knowable.

The classical view that a particle necessarily has a definite (but not necessarily knowable) velocity now, amounts to disguising a piece of the unknown future as an unknowable element of the present. Classical physics foists a deterministic scheme on us by a trick; it smuggles the unknown future into the present, trusting that we shall not press an inquiry as to whether it has become any more knowable that way.

The same principle extends to every kind of phenomenon that we attempt to predict, so long as the need for accuracy is not buried under a mass of averages. To every co-ordinate there corresponds a momentum, and by the principle of indeterminacy the more accurately the co-ordinate is known the less accurately the momentum is known. Nature thus provides that knowledge of one-half of the world will ensure ignorance of the other half—ignorance which, we have seen, may be remedied later when the same part of the world is contemplated retrospectively. We can scarcely rest content with a picture of the world which includes so much that cannot be known. We have been trying to get rid of unknowable things, i.e. all conceptions which have no causal connection with our experience. We have eliminated velocity through aether, “right” frames of space, etc., for this reason. This vast new unknowable element must likewise be swept out of the Present. Its proper place is in the Future because then it will no longer be unknowable. It has been put in prematurely as an anticipation of that which cannot be anticipated.

In assessing whether the symbols which the physicist has scattered through the external world are adequate to predetermine the future, we must be on our guard against retrospective symbols. It is easy to prophesy after the event.

.

Both comments and trackbacks are currently closed.