Eddington 1927: Selective Influence of the Mind

Molecular Thoughts

This paper presents Chapter XI (section 3) from the book THE NATURE OF THE PHYSICAL WORLD by A. S. EDDINGTON. The contents of this book are based on the lectures that Eddington delivered at the University of Edinburgh in January to March 1927.

The paragraphs of original material are accompanied by brief comments in color, based on the present understanding.  Feedback on these comments is appreciated.

The heading below links to the original materials.


Selective Influence of the Mind

This brings us very near to the problem of bridging the gulf between the scientific world and the world of everyday experience. The simpler elements of the scientific world have no immediate counterparts in everyday experience; we use them to build things which have counterparts. Energy, momentum and stress in the scientific world shadow well-known features of the familiar world. I feel stress in my muscles; one form of energy gives me the sensation of warmth; the ratio of momentum to mass is velocity, which generally enters into my experience as change of position of objects. When I say that I feel these things I must not forget that the feeling, in so far as it is located in the physical world at all, is not in the things themselves but in a certain corner of my brain. In fact, the mind has also invented a craft of world-building; its familiar world is built not from the distribution of relata and relations but by its own peculiar interpretation of the code messages transmitted along the nerves into its sanctum.

Accordingly we must not lose sight of the fact that the world which physics attempts to describe arises from the convergence of two schemes of world-building. If we look at it only from the physical side there is inevitably an arbitrariness about the building. Given the bricks—the 16 measures of world-structure—there are all sorts of things we might build. Or we might take up again some of the rejected lumber and build a still wider variety of things. But we do not build arbitrarily; we build to order. The things we build have certain remarkable properties; they have these properties in virtue of the way they are built, but they also have them because such properties were ordered. There is a general description which covers at any rate most of the building operations needed in the construction of the physical world; in mathematical language the operation consists in Hamiltonian differentiation of an invariant function of the 16 measures of structure. I do not think that there is anything in the basal relation-structure that cries out for this special kind of combination; the significance of this process is not in inorganic nature. Its significance is that it corresponds to an outlook adopted by the mind for its own reasons; and any other building process would not converge to the mental scheme of world-building. The Hamiltonian derivative has just that kind of quality which makes it stand out in our minds as an active agent against a passive extension of space and time; and Hamiltonian differentiation is virtually the symbol for creation of an active world out of the formless background. Not once in the dim past, but continuously by conscious mind is the miracle of the Creation wrought.

The role that mind plays in world building is bringing the criterion of continuum of substance by ensuring consistency, harmony and continuity.

By following this particular plan of building we construct things which satisfy the law of conservation, that is to say things which are permanent. The law of conservation is a truism for the things which satisfy it; but its prominence in the scheme of law of the physical world is due to the mind having demanded permanence. We might have built things which do not satisfy this law. In fact we do build one very important thing “action” which is not permanent; in respect to “action” physics has taken the bit in her teeth, and has insisted on recognising this as the most fundamental thing of all, although the mind has not thought it worthy of a place in the familiar world and has not vivified it by any mental image or conception. You will understand that the building to which I refer is not a shifting about of material; it is like building constellations out of stars. The things which we might have built but did not, are there just as much as those we did build. What we have called building is rather a selection from the patterns that weave themselves.

This criterion brings about the element of permanence and the law of conservation of substance.

The element of permanence in the physical world, which is familiarly represented by the conception of substance, is essentially a contribution of the mind to the plan of building or selection. We can see this selective tendency at work in a comparatively simple problem, viz. the hydrodynamical theory of the ocean. At first sight the problem of what happens when the water is given some initial disturbance depends solely on inorganic laws; nothing could be more remote from the intervention of conscious mind. In a sense this is true; the laws of matter enable us to work out the motion and progress of the different portions of the water; and there, so far as the inorganic world is concerned, the problem might be deemed to end. But actually in hydrodynamical textbooks the investigation is diverted in a different direction, viz. to the study of the motions of waves and wave-groups. The progress of a wave is not progress of any material mass of water, but of a form which travels over the surface as the water heaves up and down; again the progress of a wave-group is not the progress of a wave. These forms have a certain degree of permanence amid the shifting particles of water. Anything permanent tends to become dignified with an attribute of substantiality. An ocean traveller has even more vividly the impression that the ocean is made of waves than that it is made of water.* Ultimately it is this innate hunger for permanence in our minds which directs the course of development of hydrodynamics, and likewise directs the world-building out of the sixteen measures of structure.

* This was not intended to allude to certain consequential effects of the waves; it is true, I think, of the happier impressions of the voyage.

The element of permanence is expressed through the process of quantization.

Perhaps it will be objected that other things besides mind can appreciate a permanent entity such as mass; a weighing machine can appreciate it and move a pointer to indicate how much mass there is. I do not think that is a valid objection. In building the physical world we must of course build the measuring appliances which are part of it; and the measuring appliances result from the plan of building in the same way as the entities which they measure. If, for example, we had used some of the “lumber” to build an entity x, we could presumably construct from the same lumber an appliance for measuring x. The difference is this—if the pointer of the weighing machine is reading 5 lbs. a human consciousness is in a mysterious way (not yet completely traced) aware of the fact, whereas if the measuring appliance for x reads 5 units no human mind is aware of it. Neither x nor the appliance for measuring x have any interaction with consciousness. Thus the responsibility for the fact that the scheme of the scientific world includes mass but excludes x rests ultimately with the phenomena of consciousness.

The above is an example of maintaining consistency.

Perhaps a better way of expressing this selective influence of mind on the laws of Nature is to say that values are created by the mind. All the “light and shade” in our conception of the world of physics comes in this way from the mind, and cannot be explained without reference to the characteristics of consciousness.

The world which we have built from the relation-structure is no doubt doomed to be pulled about a good deal as our knowledge progresses. The quantum theory shows that some radical change is impending. But I think that our building exercise has at any rate widened our minds to the possibilities and has given us a different orientation towards the idea of physical law. The points which I stress are:

Firstly, a strictly quantitative science can arise from a basis which is purely qualitative. The comparability that has to be assumed axiomatically is a merely qualitative discrimination of likeness and unlikeness.

Secondly, the laws which we have hitherto regarded as the most typical natural laws are of the nature of truisms, and the ultimate controlling laws of the basal structure (if there are any) are likely to be of a different type from any yet conceived.

Thirdly, the mind has by its selective power fitted the processes of Nature into a frame of law of a pattern largely of its own choosing; and in the discovery of this system of law the mind may be regarded as regaining from Nature that which the mind has put into Nature.

Mind is part of the same system as rest of Nature. So the laws of Nature are not arbitrarily influenced by the mind. Consciousness in Man is the product of evolution. It is subject to the laws of Nature. We have not yet become fully aware of the laws that apply to consciousness.


Both comments and trackbacks are currently closed.


%d bloggers like this: