Eddington 1927: Transition to a New Theory

Geometry of space

This paper presents Chapter X (section 2) from the book THE NATURE OF THE PHYSICAL WORLD by A. S. EDDINGTON. The contents of this book are based on the lectures that Eddington delivered at the University of Edinburgh in January to March 1927.

The paragraphs of original material are accompanied by brief comments in color, based on the present understanding.  Feedback on these comments is appreciated.

The heading below links to the original materials.


Transition to a New Theory

By 1925 the machinery of current theory had developed another flaw and was urgently calling for reconstruction; Bohr’s model of the atom had quite definitely broken down. This is the model, now very familiar, which pictures the atom as a kind of solar system with a central positively charged nucleus and a number of electrons describing orbits about it like planets, the important feature being that the possible orbits are limited by the rules referred to on p. 190. Since each line in the spectrum of the atom is emitted by the jump of an electron between two particular orbits, the classification of the spectral lines must run parallel with the classification of the orbits by their quantum numbers in the model. When the spectroscopists started to unravel the various series of lines in the spectra they found it possible to assign an orbit jump for every line—they could say what each line meant in terms of the model. But now questions of finer detail have arisen for which this correspondence ceases to hold. One must not expect too much from a model, and it would have been no surprise if the model had failed to exhibit minor phenomena or if its accuracy had proved imperfect. But the kind of trouble now arising was that only two orbit jumps were provided in the model to represent three obviously associated spectral lines; and so on. The model which had been so helpful in the interpretation of spectra up to a point, suddenly became altogether misleading; and spectroscopists were forced to turn away from the model and complete their classification of lines in a way which ignored it. They continued to speak of orbits and orbit jumps but there was no longer a complete one-to- one correspondence with the orbits shown in the model.*

*Each orbit or state of the atom requires three (or, for later refinements, four) quantum numbers to define it. The first two quantum numbers are correctly represented in the Bohr model ; but the third number which discriminates the different lines forming a doublet or multiplet spectrum is represented wrongly—a much more serious failure than if it were not represented at all.

Bohr’s model of atom is inconsistent with the atomic spectra. The classification of the orbits by their quantum numbers in the model ceases to explain the finer details of the spectral lines.

There are neither electrons nor any orbits within the atom. There is only rotating field-substance with its various quantization levels. There are field particles as a result of quantization. The spectral lines relate to the absorption and emission of these field-particles.

The time was evidently ripe for the birth of a new theory. The situation then prevailing may be summarised as follows:

(1) The general working rule was to employ the classical laws with the supplementary proviso that whenever anything of the nature of action appears it must be made equal to h, or sometimes to an integral multiple of h.

(2) The proviso often led to a self-contradictory use of the classical theory. Thus in the Bohr atom the acceleration of the electron in its orbit would be governed by classical electrodynamics whilst its radiation would be governed by the h rule. But in classical electrodynamics the acceleration and the radiation are indissolubly connected.

(3) The proper sphere of classical laws was known. They are a form taken by the more general laws in a limiting case, viz. when the number of quanta concerned is very large. Progress in the investigation of the complete system of more general laws must not be hampered by classical conceptions which contemplate only the limiting case.

(4) The present compromise involved the recognition that light has both corpuscular and wave properties. The same idea seems to have been successfully extended to matter and confirmed by experiment. But this success only renders the more urgent some less contradictory way of conceiving these properties.

(5) Although the above working rule had generally been successful in its predictions, it was found to give a distribution of electron orbits in the atom differing in some essential respects from that deduced spectroscopically. Thus a reconstruction was required not only to remove logical objections but to meet the urgent demands of practical physics.

Electrons do not exist as such within the atom. They are only formed out of atomic reactions. The structure of atom is explained by certain quantum numbers. These quantum numbers needs to be explained in terms of quantization of field-substance.


Both comments and trackbacks are currently closed.
%d bloggers like this: