Eddington 1927: Geometry and Mechanics



This paper presents Chapter VI (section 7) from the book THE NATURE OF THE PHYSICAL WORLD by A. S. EDDINGTON. The contents of this book are based on the lectures that Eddington delivered at the University of Edinburgh in January to March 1927.

The paragraphs of original material are accompanied by brief comments in color, based on the present understanding.  Feedback on these comments is appreciated.

The heading below links to the original materials.


Geometry and Mechanics

The point that deserves special attention is that the proposition about time-triangles is a statement as to the behaviour of clocks moving with different velocities. We have usually regarded the behaviour of clocks as coming under the science of mechanics. We found that it was impossible to confine geometry to space alone, and we had to let it expand a little. It has expanded with a vengeance and taken a big slice out of mechanics. There is no stopping it, and bit by bit geometry has now swallowed up the whole of mechanics. It has also made some tentative nibbles at electromagnetism. An ideal shines in front of us, far ahead perhaps but irresistible, that the whole of our knowledge of the physical world may be unified into a single science which will perhaps be expressed in terms of geometrical or quasi-geometrical conceptions. Why not? All the knowledge is derived from measurements made with various instruments. The instruments used in the different fields of inquiry are not fundamentally unlike. There is no reason to regard the partitions of the sciences made in the early stages of human thought as irremovable.

Time-triangles are better described as quantization-triangles. It is not the speed of clock that slows it down, but the decrease in quantization.

But mechanics in becoming geometry remains none the less mechanics. The partition between mechanics and geometry has broken down and the nature of each of them has diffused through the whole. The apparent supremacy of geometry is really due to the fact that it possesses the richer and more adaptable vocabulary; and since after the amalgamation we do not need the double vocabulary the terms employed are generally taken from geometry. But besides the geometrisation of mechanics there has been a mechanisation of geometry. The proposition about the space-triangle quoted above was seen to have grossly material implications about the behaviour of scales which would not be realised by anyone who thinks of it as if it were a proposition of pure mathematics.

The geometry we are familiar with applies to material space and not to space that is empty of material-substance. The same consideration applies to time.

We must rid our minds of the idea that the word space in science has anything to do with void. As previously explained it has the other meaning of distance, volume, etc., quantities expressing physical measurement just as much as force is a quantity expressing physical measurement. Thus the (rather crude) statement that Einstein’s theory reduces gravitational force to a property of space ought not to arouse misgiving. In any case the physicist does not conceive of space as void. Where it is empty of all else there is still the aether. Those who for some reason dislike the word aether, scatter mathematical symbols freely through the vacuum, and I presume that they must conceive some kind of characteristic background for these symbols. I do not think any one proposes to build even so relative and elusive a thing as force out of entire nothingness.

Void as “empty space” is an erroneous concept. Space that is empty of material-substance, is there only because it is the extension characteristic of field-substance.


Both comments and trackbacks are currently closed.
%d bloggers like this: