
Reference: The Book of Physics
Note: The original text is provided below.
Previous / Next
Summary
Each observer is moving along with his measuring scale, so he doesn’t see contraction in his scale, but he sees the contraction of another observer’s scale who is moving at a speed relative to him. Since each observer is consistent in his own measurements, he sees error only in another observer’s measurements relative to his own.
Each observer has his own units for measuring spatial dimensions. He sees his own space to be standard, but another observer’s space to be contracted. He, thus, conceives of different frames of space from his point of view. His own velocity is zero, but other’s have different relative velocities with their different frames of reference.
There is no standard or absolute frame of space. So, no criterion available for selecting a frame of space. There is nothing wrong with the frame of space that has been employed in our system of physics; it has not led to experimental contradictions. The only thing known to be “wrong” with it is that it is not unique.
.
Comments
Electrical, optical and metrical phenomena has inertia. Such inertia appears only when there is acceleration. The relative velocities do not cause Fitzgerald contraction because contraction requires acceleration. So, there are no different frames of space for different relative velocities.
.
Original Text
We can now return to the quarrel between the nebular physicists and ourselves. One of us has a large velocity and his scientific measurements are seriously affected by the contraction of his scales. Each has hitherto taken it for granted that it is the other fellow who is making the mistake. We cannot settle the dispute by appeal to experiment because in every experiment the mistake introduces two errors which just compensate one another.
It is a curious sort of mistake which always carries with it its own compensation. But remember that the compensation only applies to phenomena actually observed or capable of observation. The compensation does not apply to the intermediate part of our deduction—that system of inference from observation which forms the classical physical theory of the universe.
Suppose that we and the nebular physicists survey the world, that is to say we allocate the surrounding objects to their respective positions in space. One party, say the nebular physicists, has a large velocity; their yard-measures will contract and become less than a yard when they measure distances in a certain direction; consequently they will reckon distances in that direction too great. It does not matter whether they use a yard-measure, or a theodolite, or merely judge distances with the eye; all methods of measurement must agree. If motion caused a disagreement of any kind, we should be able to determine the motion by observing the amount of disagreement; but, as we have already seen, both theory and observation indicate that there is complete compensation. If the nebular physicists try to construct a square they will construct an oblong. No test can ever reveal to them that it is not a square; the greatest advance they can make is to recognise that there are people in another world who have got it into their heads that it is an oblong, and they may be broadminded enough to admit that this point of view, absurd as it seems, is really as defensible as their own. It is clear that their whole conception of space is distorted as compared with ours, and ours is distorted as compared with theirs. We are regarding the same universe, but we have arranged it in different spaces. The original quarrel as to whether they or we are moving with the speed of 1000 miles a second has made so deep a cleavage between us that we cannot even use the same space.
Space and time are words conveying more than one meaning. Space is an empty void; or it is such and such a number of inches, acres, pints. Time is an ever-rolling stream; or it is something signaled to us by wireless. The physicist has no use for vague conceptions; he often has them, alas! But he cannot make real use of them. So when he speaks of space it is always the inches or pints that he should have in mind. It is from this point of view that our space and the space of the nebular physicists are different spaces; the reckoning of inches and pints is different. To avoid possible misunderstanding it is perhaps better to say that we have different frames of space—different frames to which we refer the location of objects. Do not, however, think of a frame of space as something consciously artificial; the frame of space comes into our minds with our first perception of space. Consider, for example, the more extreme case when the FitzGerald contraction is one-half. If a man takes a rectangle 2” x 1” to be a square it is clear that space must have dawned on his intelligence in a way very different from that in which we have apprehended it.
The frame of space used by an observer depends only on his motion. Observers on different planets with the same velocity (i.e. having zero relative velocity) will agree as to the location of the objects of the universe; but observers on planets with different velocities have different frames of location. You may ask, “How can I be so confident as to the way in which these imaginary beings will interpret their observations?” If that objection is pressed I shall not defend myself; but those who dislike my imaginary beings must face the alternative of following the argument with mathematical symbols. Our purpose has been to express in a conveniently apprehensible form certain results which follow from terrestrial experiments and calculations as to the effect of motion on electrical, optical and metrical phenomena. So much careful work has been done on this subject that science is in a position to state what will be the consequence of making measurements with instruments travelling at high speed—whether instruments of a technical kind or, for example, a human retina. In only one respect do I treat my nebular observer as more than a piece of registering apparatus; I assume that he is subject to a common failing of human nature, viz. he takes it for granted that it was his planet that God chiefly had in mind when the universe was created. Hence he is (like my reader perhaps?) disinclined to take seriously the views of location of those people who are so misguided as to move at 1000 miles a second relatively to his parish pump.
An exceptionally modest observer might take some other planet than his own as the standard of rest. Then he would have to correct all his measurements for the FitzGerald contraction due to his own motion with respect to the standard, and the corrected measures would give the space-frame belonging to the standard planet as the original measures gave the space-frame of his own planet. For him the dilemma is even more pressing, for there is nothing to guide him as to the planet to be selected for the standard of rest. Once he gives up the naive assumption that his own frame is the one and only right frame the question arises, “Which then of the innumerable other frames is right?” There is no answer, and so far as we can see no possibility of an answer. Meanwhile all his experimental measurements are waiting unreduced, because the corrections to be applied to them depend on the answer. I am afraid our modest observer will get rather left behind by his less humble colleagues.
The trouble that arises is not that we have found anything necessarily wrong with the frame of location that has been employed in our system of physics; it has not led to experimental contradictions. The only thing known to be “wrong” with it is that it is not unique. If we had found that our frame was unsatisfactory and another frame was preferable, that would not have caused a great revolution of thought; but to discover that ours is one of many frames, all of which are equally satisfactory, leads to a change of interpretation of the significance of a frame of location.
.