Eddington 1927: FitzGerald Contraction

Contraction

This paper presents Chapter 1 (sections 2 and 3) from the book THE NATURE OF THE PHYSICAL WORLD by A. S. EDDINGTON. The contents of this book are based on the lectures that Eddington delivered at the University of Edinburgh in January to March 1927.

The paragraphs of original material are accompanied by brief comments in color, based on the present understanding.  Feedback on these comments is appreciated.

The heading below links to the original materials.

.

The FitzGerald Contraction

We can best start from the following fact. Suppose that you have a rod moving at very high speed. Let it first be pointing transverse to its line of motion. Now turn it through a right angle so that it is along the line of motion. The rod contracts.  It is shorter when it is along the line of motion than when it is across the line of motion.

This contraction, known as the FitzGerald contraction, is exceedingly small in all ordinary circumstances.  It does not depend at all on the material of the rod but only on the speed. For example, if the speed is 19 miles a second—the speed of the earth round the sun—the contraction of length is 1 part in 200,000,000, or 2 ½ inches in the diameter of the earth.

This is demonstrated by a number of experiments of different kinds of which the earliest and best known is the Michelson-Morley experiment first performed in 1887, repeated more accurately by Morley and Miller in 1905, and again by several observers within the last year or two. I am not going to describe these experiments except to mention that the convenient way of giving your rod a large velocity is to carry it on the earth which moves at high speed round the sun. Nor shall I discuss here how complete is the proof afforded by these experiments. It is much more important that you should realise that the contraction is just what would be expected from our current knowledge of a material rod.

In 1887 the Michelson–Morley experiment could not verify the expected difference between the speed of light in the direction of movement through the presumed aether, and the speed at right angles. But this inconsistency came about from using the “particles in void” perspective.

Length contraction was then postulated to explain this negative outcome.

You are surprised that the dimensions of a moving, rod can be altered merely by pointing it different ways.  You expect them to remain unchanged. But which rod are you thinking of? (You remember my two tables.)  If you are thinking of continuous substance, extending in space because it is the nature of substance to occupy space, then there seems to be no valid cause for a change of dimensions. But the scientific rod is a swarm of electrical particles rushing about and widely separated from one another. The marvel is that such a swarm should tend to preserve any definite extension. The particles, however, keep a certain average spacing so that the whole volume remains practically steady; they exert electrical forces on one another, and the volume which they fill corresponds to a balance between the forces drawing them together and the diverse motions tending to spread them apart. When the rod is set in motion these electrical forces change. Electricity in motion constitutes an electric current. But electric currents give rise to forces of a different type from those due to electricity at rest, viz. magnetic forces. Moreover these forces arising from the motion of electric charges will naturally be of different intensity in the directions along and across the line of motion.

By setting in motion the rod with all the little electric charges contained in it we introduce new magnetic forces between the particles. Clearly the original balance is upset, and the average spacing between the particles must alter until a new balance is found. And so the extension of the swarm of particles—the length of the rod—alters.

There is really nothing mysterious about the FitzGerald contraction. It would be an unnatural property of a rod pictured in the old way as continuous substance occupying space in virtue of its substantiality; but it is an entirely natural property of a swarm of particles held in delicate balance by electromagnetic forces, and occupying space by buffeting away anything that tries to enter. Or you may look at it this way: your expectation that the rod will keep its original length presupposes, of course, that it receives fair treatment and is not subjected to any new stresses. But a rod in motion is subjected to a new magnetic stress, arising not from unfair outside tampering but as a necessary consequence of its own electrical constitution; and under this stress the contraction occurs. Perhaps you will think that if the rod were rigid enough it might be able to resist the compressing force. That is not so; the FitzGerald con-  traction is the same for a rod of steel and for a rod of  india-rubber; the rigidity and the compressing stress are  bound up with the constitution in such a way that if one is large so also is the other. It is necessary to rid our minds of the idea that this failure to keep a constant length is an imperfection of the rod; it is only imperfect as compared with an imaginary “something” which has not this electrical constitution—and therefore is not material at all. The FitzGerald contraction is not an imperfection but a fixed and characteristic property of matter, like inertia.

We have here drawn a qualitative inference from the electrical structure of matter; we must leave it to the mathematician to calculate the quantitative effect. The problem was worked out by Lorentz and Larmor about 1900. They calculated the change in the average spacing of the particles required to restore the balance after it had been upset by the new forces due to the change of motion of the charges. This calculation was found to give precisely the FitzGerald contraction, i.e. the amount already inferred from the experiments above mentioned. Thus we have two legs to stand on. Some will prefer to  trust the results because they seem to be well established  by experiment; others will be more easily persuaded by  the knowledge that the FitzGerald contraction is a  necessary consequence of the scheme of electromagnetic laws universally accepted since the time of Maxwell. Both experiments and theories sometimes go wrong; so it is just as well to have both alternatives.

The postulate of length contraction was first explained through deformation of electrostatic fields in motion and then later by the theory of relativity. 

.

Consequences of the Contraction

This result alone, although it may not quite lead you to the theory of relativity, ought to make you uneasy about classical physics. The physicist when he wishes to measure a length—and he cannot get far in any experiment without measuring a length—takes a scale and turns it in the direction needed. It never occurred to him that in spite of all precautions the scale would change length when he did this; but unless the earth happens to be at rest a change must occur. The constancy of a measuring scale is the rock on which the whole structure of physics has been reared; and that rock has crumbled away. You may think that this assumption cannot have betrayed the physicist very badly; the changes of length cannot be serious or they would have been noticed. Wait and see.

The above theory requires measurement of the speed of earth on some absolute scale, and not with respect to the sun. The sun has its own speed.

Let us look at some of the consequences of the FitzGerald contraction. First take what may seem to be a rather fantastic case. Imagine you are on a planet moving very fast indeed, say 161,000 miles a second. For this speed the contraction is one-half. Any solid contracts to half its original length when turned from across to along the line of motion. A railway journey between two towns which was 100 miles at noon is shortened to 50 miles at 6 p.m. when the planet has turned through a right angle. The inhabitants copy Alice in Wonderland; they pull out and shut up like a telescope.

I do not know of a planet moving at 161,000 miles a second, but I could point to a spiral nebula far away in space which is moving at 1000 miles a second. This may well contain a planet and (speaking unprofessionally) perhaps I shall not be taking too much license if I place intelligent beings on it. At 1000 miles a second the contraction is not large enough to be appreciable in ordinary affairs; but it is quite large enough to be appreciable in measurements of scientific or even of engineering accuracy. One of the most fundamental procedures in physics is to measure lengths with a scale moved about in any way. Imagine the consternation of the physicists on this planet when they learn that they have made a mistake in supposing that their scale is a constant measure of length. What a business to go back over all the experiments ever performed, apply the corrections for orientation of the scale at the time, and then consider de novo the inferences and system of physical laws to be deduced from the amended data! How thankful our own physicists ought to be that they are not in this runaway nebula but on a decently slow-moving planet like the earth!

But stay a moment. Is it so certain that we are on a slow-moving planet? I can imagine the astronomers in that nebula observing far away in space an insignificant star attended by an insignificant planet called Earth. They observe too that it is moving with the huge velocity of 1000 miles a second; because naturally if we see them receding from us at 1000 miles a second they will see us receding from them at 1000 miles a second. “A thousand miles a second!” exclaim the nebular physicists, “How unfortunate for the poor physicists on the Earth! The FitzGerald contraction will be quite appreciable, and all their measures with scales will be seriously wrong. What a weird system of laws of Nature they will have deduced, if they have overlooked this correction!”

There is no means of deciding which is right—to which of us the observed relative velocity of 1000 miles a second really belongs. Astronomically the galaxy of which the earth is a member does not seem to be more important, more central, than the nebula. The presumption that it is we who are the more nearly at rest has no serious foundation; it is mere self-flattery.

“But”, you will say, “surely if these appreciable changes of length occurred on the earth, we should detect them by our measurements.” That brings me to the interesting point. We could not detect them by any measurement; they may occur and yet pass quite unnoticed. Let me try to show how this happens.

This room, we will say, is travelling at 161,000 miles a second vertically upwards. That is my statement, and it is up to you to prove it wrong. I turn my arm from horizontal to vertical and it contracts to half its original length. You don’t believe me? Then bring a yard-measure and measure it. First, horizontally, the result is 30 inches; now vertically, the result is 30 half-inches. You must allow for the fact that an inch-division of the scale contracts to half an inch when the yard-measure is turned vertically.

“But we can see that your arm does not become shorter; can we not trust our own eyes?”

Certainly not, unless you remember that when you got up this morning your retina contracted to half its original width in the vertical direction; consequently it is now exaggerating vertical distances to twice the scale of horizontal distances.

“Very well”, you reply, “I will not get up. I will lie in bed and watch you go through your performance in an inclined mirror. Then my retina will be all right, but I know I shall still see no contraction.”

But a moving mirror does not give an undistorted image of what is happening. The angle of reflection of light is altered by motion of a mirror, just as the angle of reflection of a billiard-ball would be altered if the cushion were moving. If you will work out by the ordinary laws of optics the effect of moving a mirror at 161,000 miles a second, you will find that it introduces a distortion which just conceals the contraction of my arm.

And so on for every proposed test. You cannot disprove my assertion, and, of course, I cannot prove it; I might equally well have chosen and defended any other velocity. At first this seems to contradict what I told you earlier—that the contraction had been proved and measured by the Michelson-Morley and other experiments—but there is really no contradiction. They were all null experiments, just as your experiment of watching my arm in an inclined mirror was a null experiment. Certain optical or electrical consequences of the earth’s motion were looked for of the same type as the distortion of images by a moving mirror; these would have been observed unless a contraction occurred of just the right amount to compensate them. They were not observed; therefore the compensating contraction had occurred. There was just one alternative; the earth’s true velocity through space might happen to have been nil. This was ruled out by repeating the experiment six months later, since the earth’s motion could not be nil on both occasions. Thus the contraction was demonstrated and its law of dependence on velocity verified. But the actual amount of contraction on either occasion was unknown, since the earth’s true velocity (as distinct from its orbital velocity with respect to the sun) was unknown. It remains unknown because the optical and electrical effects by which we might hope to measure it are always compensated by the contraction.

I have said that the constancy of a measuring scale is the rock on which the structure of physics has been reared. The structure has also been supported by supplementary props because optical and electrical devices can often be used instead of material scales to ascertain lengths and distances. But we find that all these are united in a conspiracy not to give one another away. The rock has crumbled and simultaneously all the other supports have collapsed.

The inconsistencies pointed out in this section are not really inconsistencies because they are derived from the postulate of length contraction. That postulate has not been proven factual.

The null result from Michelson-Morley’s experiment requires a better explanation. An explanation is attempted from “continuum of substance” perspective as follows. 

Michelson-Morley’s Null Result

.

 

Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: