Electromagnetic Spectrum (Wikipedia)



Reference: Disturbance Theory


Parts from Wikipedia article are quoted in black. My comments follow in bold color italics.

Electromagnetic Spectrum – Wikipedia

The electromagnetic spectrum is the entire range and scope (spectrum) of frequencies of electromagnetic radiation and their respective wavelengths and photon energies.

The Electromagnetic Spectrum of frequencies applies not only to the radiation but also to the fabric of the three-dimensional field. In this field the Faraday’s lines of force appear as frequency gradients.

The electromagnetic spectrum extends from below the low frequencies used for modern radio communication to gamma radiation at the short-wavelength (high-frequency) end, thereby covering wavelengths from thousands of kilometers down to a fraction of the size of an atom. Visible light lies toward the shorter end, with wavelengths from 400 to 700 nanometers. The limit for long wavelengths is the size of the universe itself, while it is thought that the short wavelength limit is in the vicinity of the Planck length. Until the middle of the 20th century it was believed by most physicists that this spectrum was infinite and continuous.

The lowest frequency on the electromagnetic spectrum shall theoretically be zero. At zero frequency there is no cycle, inertia, energy, extension or duration. In short, there is no substance, and therefore, no space or time. We may refer to this state as “absence of all phenomena”, or EMPTINESS. It shall act as a reference point for the universe, much like zero is the reference point for the scale.

As we move up from this point on the electromagnetic spectrum we have cycles appearing with increasing frequency. As a result, the field becomes denser, and the energy becomes more focused. This makes the substance of the field acquire more inertia. The extensions of the field become increasingly enduring, meaning both space and time become more apparent.

Nearly all types of electromagnetic radiation can be used for spectroscopy, to study and characterize matter. Other technological uses are described under electromagnetic radiation.

As the frequency increases different properties appear in interaction of field with matter. Field appears to condense into mass particles in the gamma range.


Both comments and trackbacks are currently closed.
%d bloggers like this: