Category Archives: Physics

ATOM by Maxwell

Maxwell in an article on ATOM written for the 9th edition of the Encyclopedia Britannica in 1875:

ATOM (ἄτομος) is a body which cannot be cut in two. The atomic theory is a theory of the constitution of bodies, which asserts that they are made up of atoms. The opposite theory is that of the homogeneity and continuity of bodies, and asserts, at least in the case of bodies having no apparent organisation, such, for instance, as water, that as we can divide a drop of water into two parts which are each of them drops of water, so we have reason to believe that these smaller drops can be divided again, and the theory goes on to assert that there is nothing in the nature of things to hinder this process of division from being repeated over and over again, times without end. This is the doctrine of the infinite divisibility of bodies, and it is in direct contradiction with the theory of atoms.

The atomists assert that after a certain number of such divisions the parts would be no longer divisible, because each of them would be an atom. The advocates of the continuity of matter assert that the smallest conceivable body has parts, and that whatever has parts may be divided.

In ancient times Democritus was the founder of the atomic theory, while Anaxagoras propounded that of continuity, under the name of the doctrine of homœomeria (Ὁμοιομέρια), or of the similarity of the parts of a body to the whole. The arguments of the atomists, and their replies to the objections of Anaxagoras, are to be found in Lucretius.

In modern times the study of nature has brought to light many properties of bodies which appear to depend on the magnitude and motions of their ultimate constituents, and the question of the existence of atoms has once more become conspicuous among scientific inquiries.

We shall begin by stating the opposing doctrines of atoms and of continuity before giving an outline of the state of molecular science as it now exists. In the earliest times the most ancient philosophers whose speculations are known to us seem to have discussed the ideas of number and of continuous magnitude, of space and time, of matter and motion, with a native power of thought which has probably never been surpassed. Their actual knowledge, however, and their scientific experience were necessarily limited, because in their days the records of human thought were only beginning to accumulate. It is probable that the first exact notions of quantity were founded on the consideration of number. It is by the help of numbers that concrete quantities are practically measured and calculated. Now, number is discontinuous. We pass from one number to the next per saltum. The magnitudes, on the other hand, which we meet with in geometry, are essentially continuous. The attempt to apply numerical methods to the comparison of geometrical quantities led to the doctrine of incommensurables, and to that of the infinite divisibility of space. Meanwhile, the same considerations had not been applied to time, so that in the days of Zeno of Elea time was still regarded as made up of a finite number of ” moments,” while space was confessed to be divisible without limit. This was the state of opinion when the celebrated arguments against the possibility of motion, of which that of Achilles and the tortoise is a specimen, were propounded by Zeno, and such, apparently, continued to be the state of opinion till Aristotle pointed out that time is divisible without limit, in precisely the same sense that space is. And the slowness of the development of scientific ideas may be estimated from the fact that Bayle does not see any force in this statement of Aristotle, but continues to admire the paradox of Zeno. (Bayle’s Dictionary, art. “Zeno”). Thus the direction of true scientific progress was for many ages towards the, recognition of the infinite divisibility of space and time.

It was easy to attempt to apply similar arguments to matter. If matter is extended and fills space, the same mental operation by which we recognise the divisibility of space may be applied, in imagination at least, to the matter which occupies space. From this point of view the atomic doctrine might be regarded as a relic of the old numerical way of conceiving magnitude, and the opposite doctrine of the infinite divisibility of matter might appear for a time the most scientific. The atomists, on the other hand, asserted very strongly the distinction between matter and space. The atoms, they said, do not fill up the universe ; there are void spaces between them. If it were not so, Lucretius tells us, there could be no motion, for the atom which gives way first must have some empty place to move into.

“Quapropter locus est intactus, inane, vacansque
Quod si non esset, nulla ratione moveri
Res possent; namque, officium quod corporis exstat,
Officere atque obstare, id in omni tempore adesset
Omnibus : haud igitur quicquam procedere posset,
Principium quoniam cedendi nulla daret res.”

—De Rerum Natura, i. 335.

The opposite school maintained then, as they have always done, that there is no vacuum that every part of space is full of matter, that there is a universal plenum, and that all motion is like that of a fish in the water, which yields in front of the fish because the fish leaves room for it behind.

“Cedere squamigeris latices nitentibus aiunt Lt liquidas aperire vias, quia post loca pisces Linquant, quo possint cedentes Cedere squamigeris latices nitentibus aiunt Lt liquidas aperire vias, quia post loca pisces Linquant, quo possint cedentes confluere undcc.” i. 373.

In modern times Descartes held that, as it is of the essence of matter to be extended in length, breadth, and thickness, so it is of the essence of extension to be occupied by matter, for extension cannot be an extension of nothing.

“Ac proinde si quceratur quid fiet, si Dcus auferat omne corpus quod in aliquo vase continetur, et nullum aliud in ablati locum venire pernuttat ? respondendum est, vasis latera sibi invicem hoc ipso fore contigua. Cum eiiini inter duo corpora nihil interjacet, necesse est ut se inutuo tangant, ac manifesto repugnat ut distent, sive ut inter ipsa sit distantia, et tamen ut ista distantia sit nibil ; quia omnis distantia est modus extensionis, et ideo sine substantia extensa esse non potest.” Principia, ii. 18.

This identification of extension with substance rung through the whole of Descartcs’s works, and it forms one of the ultimate foundations of the system of Spinoza. Descartes, consistently with this doctrine, denied the existence of atoms as parts of matter, which by their own nature are indivisible. He seems to admit, however, that the Deity might make certain particles of matter indivisible in this sense, that no creature should be able to divide them. These particles, however, would be still divisible by their own nature, because the Deity cannot diminish his own power, and therefore must retain his power of dividing them. Leibnitz, on the other hand, regarded his monad as the ultimate element of everything.

.

[Addition 1]

.

There are thus two modes of thinking about the constitution of bodies, which have had their adherents both in ancient and in modern times. They correspond to the two methods of regarding quantity the arithmetical and the geometrical. To the atomist the true method of estimating the quantity of matter in a body is to count the atoms in it. The void spaces between the atoms count for nothing. To those who identify matter with extension, the volume of space occupied by a body is the only measure of the quantity of matter in it.

Of the different forms of the atomic theory, that of Boscovich may be taken as an example of the purest monadism. According to Boscovich matter is made up of atoms. Each atom is an indivisible point, having position in space, capable of motion in a continuous path, and possessing a certain mass, whereby a certain amount of force is required to produce a given change of motion. Besides this the atom is endowed with potential force, that is to say, that any two atoms attract or repel each other with a force depending on their distance apart. The law of this force, for all distances greater than say the thousandth of an inch, is an attraction varying as the inverse square of the distance. For smaller distances the force is an attraction for one distance and a repulsion for another, according to some law not yet discovered. Boscovich himself, in order to obviate the possibility of two atoms ever being in the same place, asserts that the ultimate force is a repulsion which increases without limit as the distance diminishes without limit, so that two atoms can never coincide. But this seems an unwarrantable concession to the vulgar opinion that two bodies cannot co-exist in the same place. This opinion is deduced from our experience of the behaviour of bodies of sensible size, but we have no experimental evidence that two atoms may not sometimes coincide. For instance, if oxygen and hydrogen combine to form water, we have no experimental evidence that the molecule of oxygen is not in the very same place with the two molecules of hydrogen. Many persons cannot get rid of the opinion that all matter is extended in length, breadth, and depth. This is a prejudice of the same kind with the last, arising from our experience of bodies consisting of immense multitudes of atoms. The system of atoms, according to Boscovich, occupies a certain region of space in virtue of the forces acting between the component atoms of the system and any other atoms when brought near them. No other system of atoms can occupy the same region of space at the same time, because, before it could do so, the mutual action of the atoms would have caused a repulsion between the two systems insuperable by any force which we can command. Thus, a number of soldiers with firearms may occupy an extensive region to the exclusion of the enemy’s armies, though the space filled by their bodies is but small. In this way Boscovich explained the apparent extension of bodies consisting of atoms, each of which is devoid of extension. According to Boscovich’s theory, all action between bodies is action at a distance. There is no such thing in nature as actual contact between two bodies. When two bodies are said in ordinary language to be in contact, all that is meant is that they are so near together that the repulsion between the nearest pairs of atoms belonging to the two bodies is very great.

Thus, in Boscovich’s theory, the atom has continuity of existence in time and space. At any instant of time it is at some point of space, and it is never in more than one place at a time. It passes from one place to another along a continuous path. It has a definite mass which cannot be increased or diminished. Atoms are endowed with the power of acting on one another by attraction or repulsion, the amount of the force depending on the distance between them. On the other hand, the atom itself has no parts or dimensions. In its geometrical aspect it is a mere geometrical point. It has no extension in space. It has not the so-called property of Impenetrability, for two atoms may exist in the same place. This we may regard as one extreme of the various opinions about the constitution of bodies.

The opposite extreme, that of Anaxagoras the theory that bodies apparently homogeneous and continuous are so in reality is, in its extreme form, a theory incapable of development. To explain the properties of any substance by this theory is impossible. We can only admit the observed properties of such substance as ultimate facts. There is a certain stage, however, of scientific progress in which a method corresponding to this theory is of service. In hydrostatics, for instance, we define a fluid by means of one of its known properties, and from this definition we make the system of deductions which constitutes the science of hydrostatics. In this way the science of hydrostatics may be built upon an experimental basis, without any consideration of the constitution of a fluid as to whether it is molecular or continuous. In like manner, after the French mathematicians had attempted, with more or less ingenuity, to construct a theory of elastic solids from the hypothesis that they consist of atoms in equilibrium under the action of their mutual forces, Stokes and others showed that all the results of this hypothesis, so far at least as they agreed with facts, might be deduced from the postulate that elastic bodies exist, and from the hypothesis that the smallest portions into which we can divide them are sensibly homogeneous. In this way the principle of continuity, which is the basis of the method of Fluxions and the whole of modern mathematics, may bo applied to the analysis of problems connected with material bodies by assuming them, for the purpose of this analysis, to be homogeneous. All that is required to make the results applicable to the real case is that the smallest portions of the substance of which we take any notice shall be sensibly of the same kind. Thus, if a railway contractor has to make a tunnel through a hill of gravel, and if one cubic yard of the gravel is so like another cubic yard that for the purposes of the contract they may be taken as equivalent, then, in estimating the work required to remove the gravel from the tunnel, he may, without fear of error, make his calculations as if the gravel were a continuous substance. But if a worm has to make his way through the gravel, it makes the greatest possible difference to him whether he tries to push right against a piece of gravel, or directs his course through one of the intervals between the pieces; to him, therefore, the gravel is by no means a homogeneous and continuous substance.

In the same way, a theory that some particular substance, say water, is homogeneous and continuous may be a good, working theory up to a certain point, but may fail when we come to deal with quantities so minute or so attenuated that their heterogeneity of structure comes into prominence. Whether this heterogeneity of structure is or is not consistent with homogeneity and continuity of substance is another question.

The extreme form of the doctrine of continuity is that stated by Descartes, who maintains that the whole universe is equally full of matter, and that this matter is all of one kind, having no essential property besides that of extension. All the properties which we perceive in matter he reduces to its parts being movable among one another, and so capable of all the varieties which we can perceive to follow from the motion of its parts (Principia, ii. 23). Descartes’s own attempts to deduce the different qualities and actions of bodies in this way are not of much value. More than a century was required to invent methods of investigating the conditions of the motion of systems of bodies such as Descartes imagined. But the hydrodynamical discovery of Helmholtz that a vortex in a perfect liquid possesses certain permanent characteristics, has been applied by Sir W. Thomson to form a theory of vortex atoms in a homogeneous, incompressible, and frictionless liquid, to which we shall return at the proper time.

[To be continued…]

.

ATTRACTION by Maxwell

Maxwell in an article on Attraction written for the 9th edition of the Encyclopedia Britannica in 1875:

That the different parts of a material system influence each other’s motions is a matter of daily observation. In some cases we cannot discover any material connection extending from the one body to the other. We call these cases of action at a distance, to distinguish them from those in which we can trace a continuous material bond of union between the bodies. The mutual action between two bodies is called stress. When the mutual action tends to bring the bodies nearer, or to prevent them from separating, it is called tension or attraction. When it tends to separate the bodies, or to prevent them from approaching, it is called pressure or repulsion. The names tension and pressure are used when the action is seen to take place through a medium. Attraction and repulsion are reserved for cases of action at a distance. The configuration of a material system can always be defined in terms of the mutual distances of the parts of the system. Any change of configuration must alter one or more of these distances. Hence the force which produces or resists such a change may be resolved into attractions or repulsions between those parts of the system whose distance is altered.

There has been a great deal of speculation as to the cause of such forces, one of them, namely, the pressure between bodies in contact, being supposed to be more easily conceived than any other kind of stress. Many attempts have therefore been made to resolve cases of apparent attraction and repulsion at a distance into cases of pressure. At one time the possibility of attraction at a distance was supposed to be refuted by asserting that a body cannot act where it is not, and that therefore all action between different portions of matter must be by direct contact. To this it was replied that we have no evidence that real contact ever takes place between two bodies, and that, in fact, when bodies are pressed against each other and in apparent contact, we may sometimes actually measure the distance between them, as when one piece of glass is laid on another, in which case a considerable pressure must be applied to bring the surfaces near enough to show the black spot of Newton’s rings, which indicates a distance of about a ten thousandth of a millimetre. If, in order tc get rid of the idea of action at a distance, we imagine a material medium through which the action is transmitted, all that we have done is to substitute for a single action at a great distance a series of actions at smaller distances between the parts of the medium, so that we cannot even thus get rid of action at a distance.

The study of the mutual action between the parts of a material system has, in modern times, been greatly simplified by the introduction of the idea of the energy of the system. The energy of the system is measured by the amount of work which it can do in overcoming external resistances. It depends on the present configuration and motion of the system, and not on the manner in which the system has acquired that configuration and motion. A complete knowledge of the manner in which the energy of the system depends on its configuration and motion, is sufficient to determine all the forces acting between the parts of the system. For instance, if the system consists of two bodies, and if the energy depends on the distance between them, then if the energy increases when the distance increases, there must be attraction between the bodies, and if the energy diminishes when the distance increases, there must be repulsion between them. In the case of two gravitating masses m and m’ at a distance r, the part of the energy which depends on r is — (negative) Mm’/r. We may therefore express the fact that there is attraction between the two bodies by saying that the energy of the system consisting of the two bodies increases when their distance increases. The question, therefore, Why do the two bodies attract each other? may be expressed in a different form. Why does the energy of the system increase when the distance increases?

But we must bear in mind that the scientific or science-producing value of the efforts made to answer these old standing questions is not to be measured by the prospect they afford us of ultimately obtaining a solution, but by their effect in stimulating men to a thorough investigation of nature. To propose a scientific question presupposes scientific knowledge, and the questions which exercise men’s minds in the present state of science may very likely be such that a little more knowledge would show us that no answer is possible. The scientific value of the question, How do bodies act on one another at a distance is to be found in the stimulus it has given to investigations into the properties of the intervening medium.

Newton, in his Principia, deduces from the observed motions of the heavenly bodies the fact that they attract one another according to a definite law. This he gives as a result of strict dynamical reasoning, and by it he shows how not only the more conspicuous phenomena, but all the apparent irregularities of the celestial motions are the calculable results of a single principle. In his Principia he confines himself to the demonstration and development of this great step in the science of the mutual action of bodies. He says nothing there about the means by which bodies gravitate towards each other. But his mind did not rest at this point. We know that he did not believe in the direct action of bodies at a distance.

“It is inconceivable that inanimate brute matter should, without the mediation of something else which is not material, operate upon and affect other matter without mutual contact, as it must do if gravitation in the sense of Epicurus be essential and inherent in it. … That gravity should be innate, inherent, and essential to matter, so that one body can act upon another at a distance, through a vacuum, without the mediation of anything else, by and through which their action and force may be conveyed from one to another, is to me so great an absurdity, that I believe no man, who has in philosophical matters a competent faculty of thinking, can ever fall into it.” Letter to Bentley.

And we also know that he sought for the mechanism of gravitation in the properties of an aethereal medium diffused over the universe.

“It appears, from his letters to Boyle, that this was his opinion early, and if he did not publish it sooner it proceeded from hence only, that he found he was not able, from experiment and observation, to give a satisfactory account of this medium and the manner of its operation in producing the chief phenomena of nature.”[1]

1 Maclaurin’s account of Sir Isaac Newton’s discoveries.

In his Optical Queries, indeed, he shows that if the pressure of this medium is less in the neighbourhood of dense bodies than at great distances from them, dense bodies will be drawn towards each other, and that if the diminution of pressure is inversely as the distance from the dense body the law will be that of gravitation. The next step, as he points out, is to account for this inequality of pressure in the medium; and as he was not able to do this, he left the explanation of the cause of gravity as a problem to succeeding ages. As regards gravitation the progress made towards the solution of the problem since the time of Newton has been almost imperceptible. Faraday showed that the transmission of electric and magnetic forces is accompanied by phenomena occurring in every part of the intervening medium. He traced the lines of force through the medium; and he ascribed to them a tendency to shorten themselves and to separate from their neighbours, thus introducing the idea of stress in the medium in a different form from that suggested by Newton; for, whereas Newton’s stress was a hydrostatic pressure in every direction, Faraday’s is a tension along the lines of force, combined with a pressure in all normal directions. By showing that the plane of polarisation of a ray of light passing through a transparent medium in the direction of the magnetic force is made to rotate, Faraday not only demonstrated the action of magnetism on light, but by using light to reveal the state of magnetisation of the medium, he “illuminated,” to use his own phrase, “the lines of magnetic force.”

From this phenomenon Thomson afterwards proved, by strict dynamical reasoning, that the transmission of magnetic force is associated with a rotatory motion of the small parts of the medium. He showed, at the same time, how the centrifugal force due to this motion would account for magnetic attraction.

A theory of this kind is worked out in greater detail in Clerk Maxwell’s Treatise on Electricity and Magnetism. It is there shown that, if we assume that the medium is in a state of stress, consisting of tension along the lines of force and pressure in all directions at right angles to the lines of force, the tension and the pressure being equal in numerical value and proportional to the square of the intensity of the field at the given point, the observed electrostatic and electromagnetic forces will be completely accounted for.

The next step is to account for this state of stress in the medium. In the case of electromagnetic force we avail ourselves of Thomson’s deduction from Faraday’s discovery stated above. We assume that the small parts of the medium are rotating about axes parallel to the lines of force. The centrifugal force due to this rotation produces the excess of pressure perpendicular to the lines of force. The explanation of electrostatic stress is less satisfactory, but there can be no doubt that a path is now open by which we may trace to the action of a medium all forces which, like the electric and magnetic forces, vary inversely as the square of the distance, and are attractive between bodies of different names, and repulsive between bodies of the same names.

The force of gravitation is also inversely as the square of the distance, but it differs from the electric and magnetic forces in this respect, that the bodies between which it acts cannot be divided into two opposite kinds, one positive and the other negative, but are in respect of gravitation all of the same kind, and that the force between them is in every case attractive. To account for such a force by means of stress in an intervening medium, on the plan adopted for electric and magnetic forces, we must assume a stress of an opposite kind from that already mentioned. We must suppose that there is a pressure in the direction of the lines of force, combined with a tension in all directions at right angles to the lines of force. Such a state of stress would, no doubt, account for the observed effects of gravitation. We have not, however, been able hitherto to imagine any physical cause for such a state of stress. It is easy to calculate the amount of this stress which would be required to account for the actual effects of gravity at the surface of the earth. It would require a pressure of 37,000 tons weight on the square inch in a vertical direction, combined with a tension of the same numerical value in all horizontal directions. The state of stress, therefore, which we must suppose to exist in the invisible medium, is 3000 times greater than that which the strongest steel could support.

Another theory of the mechanism of gravitation, that of Le Sage, who attributes it to the impact of “ultramundane corpuscules,” has been already discussed in the article ATOM, supra, p. 46.

Sir William Thomson[2] has shown that if we suppose all space filled with a uniform incompressible fluid, and if we further suppose either that material bodies are always generating and emitting this fluid at a constant rate, the fluid flowing off to infinity, or that material bodies are always absorbing and annihilating the fluid, the deficiency flowing in from infinite space, then, in either of these cases, there would be an attraction between any two bodies inversely as the square of the distance. If, however, one of the bodies were a generator of the fluid and the other an absorber of it. the bodies would repel each other.

2 Proceedings of the Royal Society of Edinburgh, 7th Feb. 1870.

Here, then, we have a hydrodynamical illustration of action at a distance, which is so far promising that it shows how bodies of the same kind may attract each other. But the conception cf a fluid constantly flowing out of a body without any supply from without, or flowing into it without any way of escape, is so contradictory to all our experience, that an hypothesis, of which it is an essential part, cannot be called an explanation of the phenomenon of gravitation.

Dr Robert Hooke, a man of singular inventive power, in 1671 endeavoured to trace the cause of gravitation to waves propagated in a medium. He found that bodies floating on water agitated by waves were drawn towards the centre of agitation.[3] He does not appear, however, to have followed up this observation in such a way as to determine completely the action of waves on an immersed body.

3 Posthumous Works, edited by R. Waller, pp. xiv and 13-4. 

Professor Challis has investigated the mathematical theory of the effect of waves of condensation and rarefaction in an elastic fluid on bodies immersed in the fluid. He found the difficulties of the investigation to be so great that he has not been able to arrive at numerical results. He concludes, however, that the effect of such waves would be to attract the body towards the centre of agitation, or to repel it from that centre, according as the wave’s length is very large or very small compared with the dimensions of the body. Practical illustrations of the effect of such waves have been given by Guyot, Schellbach, Guthrie, and Thomson.[4]

4 Philosophical Magazine, June 1871.

A tuning-fork is set in vibration, and brought near a delicately suspended light body. The body is immediately attracted towards the tuning-fork. If the tuning-fork is itself suspended, it is seen to be attracted towards any body placed near it.

Sir W. Thomson has shown that this action can in all cases be explained by the general principle that in fluid motion the average pressure is least where the average energy of motion is greatest. Now, the wave motion is greatest nearest the tuning-fork, the pressure is therefore least there ; and the suspended body being pressed unequally on opposite sides, moves from the side of greater pressure to the side of less pressure, that is towards the tuning-fork. He has also succeeded in producing repulsion in the case of a small body lighter than the surrounding medium.

It is remarkable that of the three hypotheses, which go some way towards a physical explanation of gravitation, every one involves a constant expenditure of work. Le Sage’s hypothesis of ultramundane corpuscules does so, as we have shown in the article Atom: That of the generation or absorption of fluid requires, not only constant expenditure of work in emitting fluid under pressure, but actual creation and destruction of matter. That of waves requires some agent in a remote part of the universe capable of generating the waves.

According to such hypotheses we must regard the processes of nature not as illustrations of the great principle of the conservation of energy, but as instances in which, by a nice adjustment of powerful agencies not subject to this principle, an apparent conservation of energy is maintained. Hence, we are forced to conclude that the explanation of the cause of gravitation is not to be found in any of these hypotheses.

For the mathematical theory of attraction and attraction of ellipsoids, see POTENTIAL; for attraction of gravitation, capillary attraction, and attraction of cohesion, see respectively GRAVITATION, CAPILLARY ATTRACTION, and CONSTITUTION OF BODIES.

(J. C. M.)

.

The Vortex Model

Reference: Postulate Mechanics

The increase in consistency from thought to energy to matter, can be seen as condensation of the substance, and a decrease in its fluidity or intrinsic motion. This phenomenon may be represented by a Vortex Model.

.

Definition of VORTEX MODEL

Thought, energy and matter may be visualized as forming the outer, middle and central part, respectively, of a giant rotating vortex. From this Vortex Model we may conclude that matter at the center would have a speed of near zero. The path of electromagnetic energy would have a very large radius, resulting in a linear speed that of light. The path of thought would have a still larger radius and its linear speed shall be still greater in proportion. 

As one moves toward the center of this rotating Vortex, one is approaching the concept of a point particle of infinitesimal dimensions and infinite consistency. This particle shall have rotational motion only. This is approximated by a proton in a hydrogen atom.

Only when one moves away from the center of this rotating Vortex, that a location undergoes a displacement and has a linear velocity. The path of such a location has the curvature of a circle. A particle filling this location shall have less than infinite mass. This is approximated by an electron in a hydrogen atom.

When the distance from the center of this rotating Vortex is extremely large, the curvature of the path becomes so small that it appears to be a straight line. The substance filling this location shall have no mass, extremely low consistency, and extremely large linear velocity. This is approximated by light.

A similar extrapolation may be made for thought, which will have still lower consistency and higher liner velocity.

.

Notes

The most striking observation about intrinsic motion is its inverse relationship with the consistency of substance. This relationship is observable only when we look at the spectrum of substance from thought to energy to matter. It is not observable when we simply focus on matter. This is because visible motion of matter corresponds to a negligible change in mass. This change in mass with motion is so small that it is ignored in the Newtonian mechanics. Only when the difference in their masses is not too large that the representation of objects as point particles correctly predicts relative motion in Newtonian mechanics.

For this reason, the representation of both proton and electron as point particles in a Hydrogen atom does become a problem, because the difference between their masses is relatively very large. The Heisenberg’s uncertainty principle was conceived to resolve this problem.

Similarly, the representation of both Mercury and Sun as point particles also became a problem, because the difference between their masses is relatively very large. Thus, Newtonian mechanics produces incorrect results. Einstein’s theory of general relativity was conceived to resolve this problem.

According to this Vortex model, the intrinsic motion of substance increases as its consistency decreases from matter to energy to thought. To get accurate answers for relative motions the inverse relationship between consistency (mass) and motion must be taken into account. A hypothesis may be advanced that the product of the consistency and motion is a universal constant. 

.

Key Misconception

A key misconception in Physics is that motion and consistency (mass) of substance are not related to each other, and that there is no absolute scale to measure motion.

.

More Misconceptions

You may discover more misconceptions on your own, if you contemplate on each sentence of the above definition with mindfulness. Please see:

The 12 Aspects of Mindfulness

Or, you may end up improving upon this definition.

Good luck!

.

The Intrinsic Motion (old)

Please See: The Motion

If there is only one object in the universe, we cannot talk about its relative motion, but we can still talk about its intrinsic motion. The intrinsic motion of an object would be a property just like consistency. 

.

Definition of INTRINSIC MOTION

In a solid object, the internal structure is pretty fixed. We may say that the intrinsic motion of a solid object is zero because its center of mass is fixed within that structure. But in a fluid object, the internal structure is not so fixed, and its center of mass may shift around a bit. So, it has some intrinsic motion. We may say that the intrinsic motion of a substance is related to the fluidity of its internal structure.

As the consistency of substance decreases, the substance expands and becomes more fluid. This can be seen in an atom, where the electronic region is much more fluid compared to the nuclear region because the consistency of the electronic region is much less compared to the nuclear region. The increased fluidity of the electronic region translates into greater intrinsic motion.

A black hole at the center of a galaxy has extremely large mass, and it is not fluid at all; whereas, light has literally no mass, and it is completely fluid. Therefore, the speed of the black hole is practically zero compared to the speed of light, which is 3 x 108 meters / second. 

In the material region itself, we see stars in a galaxy revolving around the black hole at its center; and the planets in a star system revolving around its central star. This is because stars have lesser mass than the central black hole; and the planets have lesser mass than their central star.

There are many influences on the motion of a free body; but a general conclusion may be drawn that the lesser is the mass, the greater is the natural speed of a singlefree body due to greater intrinsic motion. This may not be so for the many rocks in the ring of Mars; but it would so for an isolated comet traveling in the heavens.

On a large scale, there appears to be an inverse relationship between the consistency of substance and its intrinsic motion or fluidity. The higher is the consistency of substance, the slower is its intrinsic motion.

.

Notes

In physics, one generally considers the motion of a point particle to simplify mathematics. A point particle is derived from the idea of the center of mass of a solid object. Therefore, inherent to the use of a point particle is the assumption that the motion is being applied to a solid object. For a point particle, the intrinsic motion would be zero and the consistency would be infinite.

The problem with the Bohr’s model of atom immediately becomes obvious when both the nucleons and the electrons are treated as point particles, while they are vastly different in their consistency and intrinsic motion. This anomaly gave rise to the Heisenberg’s uncertainty principle. The probability function is trying to address the phenomenon of intrinsic motion.

As the consistency of an object approaches infinity, its intrinsic motion approaches zero. This would be the state of absolute rest. A black hole at the center of a galaxy would closely approximate the state of absolute rest.

The definition of motion as the “change of position in space” applies to solid objects and point particles only. It is a matter-centric concept. 

.

Key Misconception

A key misconception is that the relative motion describes the actual motion of substance. It is obvious that the motion of Earth is not measured by its speed relative to light, or to the Sun. The actual motion is described by the intrinsic motion of substance.

.

More Misconceptions

You may discover more misconceptions on your own, if you contemplate on each sentence of the above definition with mindfulness. Please see:

The 12 Aspects of Mindfulness

Or, you may end up improving upon this definition.

Good luck!

.

The Matter-Centric Fixation

Reference: Essays on Substance

The Matter-Centric Fixation

Physics, at one time, believed that the Sun goes around the Earth. This earth-centric observation also found the planets to have complex motions. However, with the introduction of a heliocentric model for the Solar system, all this complexity of motion suddenly disappeared. All planets, including Earth, could now be seen to have simple regular motions around the Sun.

It was the increasing use of the scientific method that helped overcome the earth-centric fixation. The heliocentric theory has been verified by direct observation of similar systems in the heavens. The use of mathematics has been at the center of this scientific revolution. It is quite possible that unnecessary complexity of math may indicate that a phenomena is being viewed incorrectly.  

The math involved in classical physics appears to be very simple compared to math required today to explain the sub-atomic and cosmic phenomena. The interpretation of the math arising from the theory of relativity and quantum mechanics is increasingly challenging our reality of how the substance behaves in space and time. We still do not quite understand the nature of basic phenomena, such as, charge, radiation and gravity. 

Physics believes that the only substance is matter with mass. It believes that the phenomena of electromagnetic radiation and thought have no mass; but they arise from matter. It endeavors to describe all phenomena in terms of particles that have center-of-mass, and waves that require a material medium. All this seems to sum up to a matter-centric fixation. 

Is matter the only substance that there is? Can the Scientific Method help us answer this question?

.