Category Archives: Science

Eddington 1927: Relative and Absolute Quantities

Reference: The Book of Physics

Note: The original text is provided below.
Previous / Next

Summary

.

Comments

.

Original Text

I will try to make clear the distinction between absolute and relative quantities. Number (of discrete individuals) is absolute. It is the result of counting, and counting is an absolute operation. If two men count the number of people in this room and reach different results, one of them must be wrong.

The measurement of distance is not an absolute operation. It is possible for two men to measure the same distance and reach different results, and yet neither of them be wrong.

I mark two dots on the blackboard and ask two students to measure very accurately the distance between them. In order that there may be no possible doubt as to what I mean by distance I give them elaborate instructions as to the standard to be used and the precautions necessary to obtain an accurate measurement of distance. They bring me results which differ. I ask them to compare notes to find out which of them is wrong, and why? Presently they return and say: “It was your fault because in one respect your instructions were not explicit. You did not mention what motion the scale should have when it was being used.” One of them without thinking much about the matter had kept the scale at rest on the earth. The other had reflected that the earth was a very insignificant planet of which the Professor had a low opinion. He thought it would be only reasonable to choose some more important body to regulate the motion of the scale, and so he had given it a motion agreeing with that of the enormous star Betelgeuse. Naturally the FitzGerald contraction of the scale accounted for the difference of results.

I am disinclined to accept this excuse. I say severely, “It is all nonsense dragging in the earth or Betelgeuse or any other body. You do not require any standard external to the problem. I told you to measure the distance of two points on the blackboard; you should have made the motion of the scale agree with that of the blackboard. Surely it is common sense to make your measuring scale move with what you are measuring. Remember that next time.”

A few days later I ask them to measure the wavelength of sodium light—the distance from crest to crest of the light waves. They do so and return in triumphal agreement: ”The wave-length is infinite”. I point out to them that this does not agree with the result given in the book (.000059 cm.). “Yes”, they reply, “we noticed that; but the man in the book did not do it right. You told us always to make the measuring scale move with the thing to be measured. So at great trouble and expense we sent our scales hurtling through the laboratory at the same speed as the light.” At this speed the FitzGerald contraction is infinite, the metre rods contract to nothing, and so it takes an infinite number of them to fill up the interval from crest to crest of the waves.

My supplementary rule was in a way quite a good rule; it would always give something absolute—something on which they would necessarily agree. Only unfortunately it would not give the length or distance. When we ask whether distance is absolute or relative, we must not first make up our minds that it ought to be absolute and then change the current significance of the term to make it so.

Nor can we altogether blame our predecessors for having stupidly made the word “distance” mean something relative when they might have applied it to a result of spatial measurement which was absolute and unambiguous. The suggested supplementary rule has one drawback. We often have to consider a system containing a number of bodies with different motions; it would be inconvenient to have to measure each body with apparatus in a different state of motion, and we should get into a terrible muddle in trying to fit the different measures together. Our predecessors were wise in referring all distances to a single frame of space, even though their expectation that such distances would be absolute has not been fulfilled.

As for the absolute quantity given by the proposed supplementary rule, we may set it alongside distances relative to the earth and distances relative to Betelgeuse, etc., as a quantity of some interest to study. It is called “proper-distance”. Perhaps you feel a relief at getting hold of something absolute and would wish to follow it up. Excellent. But remember this will lead you away from the classical scheme of physics which has chosen the relative distances to build on. The quest of the absolute leads into the four-dimensional world.

A more familiar example of a relative quantity is “direction” of an object. There is a direction of Cambridge relative to Edinburgh and another direction relative to London, and so on. It never occurs to us to think of this as a discrepancy, or to suppose that there must be some direction of Cambridge (at present undiscoverable) which is absolute. The idea that there ought to be an absolute distance between two points contains the same kind of fallacy. There is, of course, a difference of detail; the relative direction above mentioned is relative to a particular position of the observer, whereas the relative distance is relative to a particular velocity of the observer. We can change position freely and so introduce large changes of relative direction; but we cannot change velocity appreciably—the 300 miles an hour attainable by our fastest devices being too insignificant to count. Consequently the relativity of distance is not a matter of common experience as the relativity of direction is. That is why we have unfortunately a rooted impression in our minds that distance ought to be absolute.

A very homely illustration of a relative quantity is afforded by the pound sterling. Whatever may have been the correct theoretical view, the man in the street until very recently regarded a pound as an absolute amount of wealth. But dire experience has now convinced us all of its relativity. At first we used to cling to the idea that there ought to be an absolute pound and struggle to express the situation in paradoxical statements —the pound had really become seven-and-sixpence. But we have grown accustomed to the situation and continue to reckon wealth in pounds as before, merely recognizing that the pound is relative and therefore must not be expected to have those properties that we had attributed to it in the belief that it was absolute.

You can form some idea of the essential difference in the outlook of physics before and after Einstein’s principle of relativity by comparing it with the difference in economic theory which comes from recognizing the relativity of value of money. I suppose that in stable times the practical consequences of this relativity are manifested chiefly in the minute fluctuations of foreign exchanges, which may be compared with the minute changes of length affecting delicate experiments like the Michelson-Morley experiment. Occasionally the consequences may be more sensational—a mark-exchange soaring to billions, a high-speed β particle contracting to a third of its radius. But it is not these casual manifestations which are the main outcome. Clearly an economist who believes in the absoluteness of the pound has not grasped the rudiments of his subject. Similarly if we have conceived the physical world as intrinsically constituted out of those distances, forces and masses which are now seen to have reference only to our own special reference frame, we are far from a proper understanding of the nature of things.

.

Eddington 1927: Chapter 1 Summary

Reference: The Book of Physics

Note: The original text is provided below.
Previous / Next

Summary

.

Comments

.

Original Text

This thought will be followed up in the next chapter. Meanwhile let us glance back over the arguments that have led to the present situation. It arises from the failure of our much-trusted measuring scale, a failure which we can infer from strong experimental evidence or more simply as an inevitable consequence of accepting the electrical theory of matter. This unforeseen behaviour is a constant property of all kinds of matter and is even shared by optical and electrical measuring devices. Thus it is not betrayed by any kind of discrepancy in applying the usual methods of measurement. The discrepancy is revealed when we change the standard motion of the measuring appliances, e.g. when we compare lengths and distances as measured by terrestrial observers with those which would be measured by observers on a planet with different velocity. Provisionally we shall call the measured lengths which contain this discrepancy “fictitious lengths”.

According to the Newtonian scheme length is definite and unique; and each observer should apply corrections (dependent on his motion) to reduce his fictitious lengths to the unique Newtonian length. But to this there are two objections. The corrections to reduce to Newtonian length are indeterminate; we know the corrections necessary to reduce our own fictitious lengths to those measured by an observer with any other prescribed motion, but there is no criterion for deciding which system is the one intended in the Newtonian scheme. Secondly, the whole of present-day physics has been based on lengths measured by terrestrial observers without this correction, so that whilst its assertions ostensibly refer to Newtonian lengths they have actually been proved for fictitious lengths.

The FitzGerald contraction may seem a little thing to bring the whole structure of classical physics tumbling down. But few indeed are the experiments contributing to our scientific knowledge which would not be invalidated if our methods of measuring lengths were fundamentally unsound. We now find that there is no guarantee that they are not subject to a systematic kind of error. Worse still we do not know if the error occurs or not, and there is every reason to presume that it is impossible to know.

.

Introduction (Relativity)

Reference: Einstein 1920: Relativity

Einstein starts with considering the coordinates of space and time that have so far been considered in an abstract mathematical sense, and applies to them the principles of palpability of physics. Matter, in spite of being very rigid, expands and contracts when heated and cooled. Can the rigid coordinates of space also expand and contract under the influence of time? So started the thought that went into building a fantastic theory of relativity.

The theory of relativity presents a fascinating view of the physical universe. It presents the covariance of space, time and substantiality in the form of a four-dimensional world. Under the influence of time, space seems to acquire the palpability of substance. The concept of substance includes both the rigidity of matter and the fluidity of energy. For example, Matter becomes concentrated energy, and energy becomes diluted matter. The concept of inertia that applied to matter in classical mechanics, now gets generalized into the consistency of space. The variability of this consistency makes space appear as energy and matter in a gravitational field.

The comments at the end of this book present the following model of the universe based on Einstein’s theory of relativity:

The space has substantiality, which gives it a measure of consistency. When the consistency is extremely small, the space appears as fluid energy that has a very high velocity. When the consistency is extremely large, the space appears as rigid matter that has a very low velocity. In between, the space appears as the gravitational field of variable consistency and velocity. The velocity has an inverse relationship with consistency. It is the balance of inherent motion of matter floating in a sea of energy that is perceived as the phenomenon of Gravity.

The spectrum of energy/matter based on the property of consistency suggests a vortex type pattern, which is seen repeated in nature at all scales. For example, the atoms display this pattern where the electrons form a vortex, at the center of which there is an extremely dense and small spinning nucleus. The “gravitational field” at this level appears as charge.

At the level of the solar system, planets revolve, as if they are caught up in a vortex of gravity, at the center which is a massive and spinning sun. In their turn, the spinning planets form the center of smaller vortices of gravity in which their moons are caught up.

On a much larger cosmic scale, we have solar or star systems that are caught up in a vortex of gravity which appears as a galaxy. At the center of the galaxy is an extremely dense and small spinning black hole.

All these vortices at different scales seem to be overlapping and producing a very complex pattern in which the inherent motions of the heavenly bodies balance each other in a cosmic dance. We may thus visualize the universe having a “solid” spinning center made up uncountable number of galaxies with a great periphery of curving light far away of unimaginable proportions.

This “vortex universe” is devoid of solid masses in about 99% of its volume; but that volume is filled with palpable energy. The universe may be considered to be finite yet unbounded because it seems to curve upon itself.

.

Preface (Relativity)

Reference: Einstein’s 1920 Book

This Book summarizes Albert Einstein’s RELATIVITY: THE SPECIAL AND GENERAL THEORY, originally published by Henry Holt and Company, New York (1920).

Einstein’s Special Theory of Relativity addresses the effect of the finiteness of the velocity of light on the space coordinates. A much more comprehensive General Theory of Relativity then explains gravity by postulating a four-dimensional continuum that has acquired the properties of extension and durability.

This book summarizes the original presentation above one section at a time. The summary contains Einstein’s ideas in their purity.

The summary is accompanied by comments, also one section at a time, that provide a new interpretation of Einstein’s ideas. This interpretation gradually builds up a model of the universe that makes Einstein’s theory of relativity easier to understand.

It is my hope that more people will get the pleasure of really understanding this brilliant theory of relativity that was completed by Einstein in 1915.

.

ATOM by Maxwell

Maxwell in an article on ATOM written for the 9th edition of the Encyclopedia Britannica in 1875:

ATOM (ἄτομος) is a body which cannot be cut in two. The atomic theory is a theory of the constitution of bodies, which asserts that they are made up of atoms. The opposite theory is that of the homogeneity and continuity of bodies, and asserts, at least in the case of bodies having no apparent organisation, such, for instance, as water, that as we can divide a drop of water into two parts which are each of them drops of water, so we have reason to believe that these smaller drops can be divided again, and the theory goes on to assert that there is nothing in the nature of things to hinder this process of division from being repeated over and over again, times without end. This is the doctrine of the infinite divisibility of bodies, and it is in direct contradiction with the theory of atoms.

The atomists assert that after a certain number of such divisions the parts would be no longer divisible, because each of them would be an atom. The advocates of the continuity of matter assert that the smallest conceivable body has parts, and that whatever has parts may be divided.

In ancient times Democritus was the founder of the atomic theory, while Anaxagoras propounded that of continuity, under the name of the doctrine of homœomeria (Ὁμοιομέρια), or of the similarity of the parts of a body to the whole. The arguments of the atomists, and their replies to the objections of Anaxagoras, are to be found in Lucretius.

In modern times the study of nature has brought to light many properties of bodies which appear to depend on the magnitude and motions of their ultimate constituents, and the question of the existence of atoms has once more become conspicuous among scientific inquiries.

We shall begin by stating the opposing doctrines of atoms and of continuity before giving an outline of the state of molecular science as it now exists. In the earliest times the most ancient philosophers whose speculations are known to us seem to have discussed the ideas of number and of continuous magnitude, of space and time, of matter and motion, with a native power of thought which has probably never been surpassed. Their actual knowledge, however, and their scientific experience were necessarily limited, because in their days the records of human thought were only beginning to accumulate. It is probable that the first exact notions of quantity were founded on the consideration of number. It is by the help of numbers that concrete quantities are practically measured and calculated. Now, number is discontinuous. We pass from one number to the next per saltum. The magnitudes, on the other hand, which we meet with in geometry, are essentially continuous. The attempt to apply numerical methods to the comparison of geometrical quantities led to the doctrine of incommensurables, and to that of the infinite divisibility of space. Meanwhile, the same considerations had not been applied to time, so that in the days of Zeno of Elea time was still regarded as made up of a finite number of ” moments,” while space was confessed to be divisible without limit. This was the state of opinion when the celebrated arguments against the possibility of motion, of which that of Achilles and the tortoise is a specimen, were propounded by Zeno, and such, apparently, continued to be the state of opinion till Aristotle pointed out that time is divisible without limit, in precisely the same sense that space is. And the slowness of the development of scientific ideas may be estimated from the fact that Bayle does not see any force in this statement of Aristotle, but continues to admire the paradox of Zeno. (Bayle’s Dictionary, art. “Zeno”). Thus the direction of true scientific progress was for many ages towards the, recognition of the infinite divisibility of space and time.

It was easy to attempt to apply similar arguments to matter. If matter is extended and fills space, the same mental operation by which we recognise the divisibility of space may be applied, in imagination at least, to the matter which occupies space. From this point of view the atomic doctrine might be regarded as a relic of the old numerical way of conceiving magnitude, and the opposite doctrine of the infinite divisibility of matter might appear for a time the most scientific. The atomists, on the other hand, asserted very strongly the distinction between matter and space. The atoms, they said, do not fill up the universe ; there are void spaces between them. If it were not so, Lucretius tells us, there could be no motion, for the atom which gives way first must have some empty place to move into.

“Quapropter locus est intactus, inane, vacansque
Quod si non esset, nulla ratione moveri
Res possent; namque, officium quod corporis exstat,
Officere atque obstare, id in omni tempore adesset
Omnibus : haud igitur quicquam procedere posset,
Principium quoniam cedendi nulla daret res.”

—De Rerum Natura, i. 335.

The opposite school maintained then, as they have always done, that there is no vacuum that every part of space is full of matter, that there is a universal plenum, and that all motion is like that of a fish in the water, which yields in front of the fish because the fish leaves room for it behind.

“Cedere squamigeris latices nitentibus aiunt Lt liquidas aperire vias, quia post loca pisces Linquant, quo possint cedentes Cedere squamigeris latices nitentibus aiunt Lt liquidas aperire vias, quia post loca pisces Linquant, quo possint cedentes confluere undcc.” i. 373.

In modern times Descartes held that, as it is of the essence of matter to be extended in length, breadth, and thickness, so it is of the essence of extension to be occupied by matter, for extension cannot be an extension of nothing.

“Ac proinde si quceratur quid fiet, si Dcus auferat omne corpus quod in aliquo vase continetur, et nullum aliud in ablati locum venire pernuttat ? respondendum est, vasis latera sibi invicem hoc ipso fore contigua. Cum eiiini inter duo corpora nihil interjacet, necesse est ut se inutuo tangant, ac manifesto repugnat ut distent, sive ut inter ipsa sit distantia, et tamen ut ista distantia sit nibil ; quia omnis distantia est modus extensionis, et ideo sine substantia extensa esse non potest.” Principia, ii. 18.

This identification of extension with substance rung through the whole of Descartcs’s works, and it forms one of the ultimate foundations of the system of Spinoza. Descartes, consistently with this doctrine, denied the existence of atoms as parts of matter, which by their own nature are indivisible. He seems to admit, however, that the Deity might make certain particles of matter indivisible in this sense, that no creature should be able to divide them. These particles, however, would be still divisible by their own nature, because the Deity cannot diminish his own power, and therefore must retain his power of dividing them. Leibnitz, on the other hand, regarded his monad as the ultimate element of everything.

.

[Addition 1]

.

There are thus two modes of thinking about the constitution of bodies, which have had their adherents both in ancient and in modern times. They correspond to the two methods of regarding quantity the arithmetical and the geometrical. To the atomist the true method of estimating the quantity of matter in a body is to count the atoms in it. The void spaces between the atoms count for nothing. To those who identify matter with extension, the volume of space occupied by a body is the only measure of the quantity of matter in it.

Of the different forms of the atomic theory, that of Boscovich may be taken as an example of the purest monadism. According to Boscovich matter is made up of atoms. Each atom is an indivisible point, having position in space, capable of motion in a continuous path, and possessing a certain mass, whereby a certain amount of force is required to produce a given change of motion. Besides this the atom is endowed with potential force, that is to say, that any two atoms attract or repel each other with a force depending on their distance apart. The law of this force, for all distances greater than say the thousandth of an inch, is an attraction varying as the inverse square of the distance. For smaller distances the force is an attraction for one distance and a repulsion for another, according to some law not yet discovered. Boscovich himself, in order to obviate the possibility of two atoms ever being in the same place, asserts that the ultimate force is a repulsion which increases without limit as the distance diminishes without limit, so that two atoms can never coincide. But this seems an unwarrantable concession to the vulgar opinion that two bodies cannot co-exist in the same place. This opinion is deduced from our experience of the behaviour of bodies of sensible size, but we have no experimental evidence that two atoms may not sometimes coincide. For instance, if oxygen and hydrogen combine to form water, we have no experimental evidence that the molecule of oxygen is not in the very same place with the two molecules of hydrogen. Many persons cannot get rid of the opinion that all matter is extended in length, breadth, and depth. This is a prejudice of the same kind with the last, arising from our experience of bodies consisting of immense multitudes of atoms. The system of atoms, according to Boscovich, occupies a certain region of space in virtue of the forces acting between the component atoms of the system and any other atoms when brought near them. No other system of atoms can occupy the same region of space at the same time, because, before it could do so, the mutual action of the atoms would have caused a repulsion between the two systems insuperable by any force which we can command. Thus, a number of soldiers with firearms may occupy an extensive region to the exclusion of the enemy’s armies, though the space filled by their bodies is but small. In this way Boscovich explained the apparent extension of bodies consisting of atoms, each of which is devoid of extension. According to Boscovich’s theory, all action between bodies is action at a distance. There is no such thing in nature as actual contact between two bodies. When two bodies are said in ordinary language to be in contact, all that is meant is that they are so near together that the repulsion between the nearest pairs of atoms belonging to the two bodies is very great.

Thus, in Boscovich’s theory, the atom has continuity of existence in time and space. At any instant of time it is at some point of space, and it is never in more than one place at a time. It passes from one place to another along a continuous path. It has a definite mass which cannot be increased or diminished. Atoms are endowed with the power of acting on one another by attraction or repulsion, the amount of the force depending on the distance between them. On the other hand, the atom itself has no parts or dimensions. In its geometrical aspect it is a mere geometrical point. It has no extension in space. It has not the so-called property of Impenetrability, for two atoms may exist in the same place. This we may regard as one extreme of the various opinions about the constitution of bodies.

The opposite extreme, that of Anaxagoras the theory that bodies apparently homogeneous and continuous are so in reality is, in its extreme form, a theory incapable of development. To explain the properties of any substance by this theory is impossible. We can only admit the observed properties of such substance as ultimate facts. There is a certain stage, however, of scientific progress in which a method corresponding to this theory is of service. In hydrostatics, for instance, we define a fluid by means of one of its known properties, and from this definition we make the system of deductions which constitutes the science of hydrostatics. In this way the science of hydrostatics may be built upon an experimental basis, without any consideration of the constitution of a fluid as to whether it is molecular or continuous. In like manner, after the French mathematicians had attempted, with more or less ingenuity, to construct a theory of elastic solids from the hypothesis that they consist of atoms in equilibrium under the action of their mutual forces, Stokes and others showed that all the results of this hypothesis, so far at least as they agreed with facts, might be deduced from the postulate that elastic bodies exist, and from the hypothesis that the smallest portions into which we can divide them are sensibly homogeneous. In this way the principle of continuity, which is the basis of the method of Fluxions and the whole of modern mathematics, may bo applied to the analysis of problems connected with material bodies by assuming them, for the purpose of this analysis, to be homogeneous. All that is required to make the results applicable to the real case is that the smallest portions of the substance of which we take any notice shall be sensibly of the same kind. Thus, if a railway contractor has to make a tunnel through a hill of gravel, and if one cubic yard of the gravel is so like another cubic yard that for the purposes of the contract they may be taken as equivalent, then, in estimating the work required to remove the gravel from the tunnel, he may, without fear of error, make his calculations as if the gravel were a continuous substance. But if a worm has to make his way through the gravel, it makes the greatest possible difference to him whether he tries to push right against a piece of gravel, or directs his course through one of the intervals between the pieces; to him, therefore, the gravel is by no means a homogeneous and continuous substance.

In the same way, a theory that some particular substance, say water, is homogeneous and continuous may be a good, working theory up to a certain point, but may fail when we come to deal with quantities so minute or so attenuated that their heterogeneity of structure comes into prominence. Whether this heterogeneity of structure is or is not consistent with homogeneity and continuity of substance is another question.

The extreme form of the doctrine of continuity is that stated by Descartes, who maintains that the whole universe is equally full of matter, and that this matter is all of one kind, having no essential property besides that of extension. All the properties which we perceive in matter he reduces to its parts being movable among one another, and so capable of all the varieties which we can perceive to follow from the motion of its parts (Principia, ii. 23). Descartes’s own attempts to deduce the different qualities and actions of bodies in this way are not of much value. More than a century was required to invent methods of investigating the conditions of the motion of systems of bodies such as Descartes imagined. But the hydrodynamical discovery of Helmholtz that a vortex in a perfect liquid possesses certain permanent characteristics, has been applied by Sir W. Thomson to form a theory of vortex atoms in a homogeneous, incompressible, and frictionless liquid, to which we shall return at the proper time.

[To be continued…]

.