APPENDIX II

MINKOWSKI'S FOUR — DIMENSIONAL SPACE ("WORLD") [SUPPLEMENTARY TO SECTION XVII]

E can characterise the Lorentz transformation still more simply if we introduce the imaginary $\sqrt{-1}$. ct in place of t, as time-variable. If, in accordance with this, we insert

$$x_1 = x$$

$$x_2 = y$$

$$x_3 = z$$

$$x_4 = \sqrt{-1.ct},$$

and similarly for the accented system K', then the condition which is identically satisfied by the transformation can be expressed thus:

$$x_1'^2 + x_2'^2 + x_2'^2 + x_4'^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2$$
. (12).

That is, by the afore-mentioned choice of "co-ordinates" (11a) is transformed into this equation.

We see from (12) that the imaginary time coordinate x_4 enters into the condition of transformation in exactly the same way as the space co-ordinates x_1, x_2, x_3 . It is due to this fact that, according to the theory of relativity, the "time"

 x_4 enters into natural laws in the same form as the space co-ordinates x_1, x_2, x_3 .

A four-dimensional continuum described by the "co-ordinates" x_1 , x_2 , x_3 , x_4 , was called "world" by Minkowski, who also termed a point-event a "world-point." From a "happening" in three-dimensional space, physics becomes, as it were, an "existence" in the four-dimensional "world."

This four-dimensional "world" bears a close similarity to the three-dimensional "space" of (Euclidean) analytical geometry. If we introduce into the latter a new Cartesian co-ordinate system (x'_1, x'_2, x'_3) with the same origin, then x'_1, x'_2, x'_3 , are linear homogeneous functions of x_1, x_2, x_3 , which identically satisfy the equation

$$x_1'^2 + x_2'^2 + x_3'^2 = x_1^2 + x_2^2 + x_3^2$$
.

The analogy with (12) is a complete one. We can regard Minkowski's "world" in a formal manner as a four-dimensional Euclidean space (with imaginary time co-ordinate); the Lorentz transformation corresponds to a "rotation" of the co-ordinate system in the four-dimensional "world."