
Chapter 4 

Electric Potential and Capacitance 

4.1 POTENTIAL ENERGY AND POTENTIAL 

In the previous chapter we learned about the force due to the electrical interaction and the electric 
field concept used to describe that force. The interaction is very similar to the interaction of masses with 
each other described by the gravitational interaction. Forces in general, as we learned in Chap. 6 of 
Beginning Physics I, Sec. 6.3, are able to do work, and the work that they do can be transformed into 
kinetic energy. For forces that are “conservative” the work done can be expressed in terms of a change 
in potential energy associated with those forces. In the case of the gravitational force due to the Earth, 
for example, the potential energy is given by U ,  = mgh near the surface of the earth (where the force of 
gravity is a constant) and, more generally, U ,  = -GrnM/r for greater distances r from the center of the 
earth. When some forces are conservative and others are not, the work-nergy theorem can be 
expressed as total work (non-conservative) equals the total change in kinetic energy plus the total 
change in potential energy (due to all conservative forces). We now consider the electrical force. Is this 
force also conservative, and, if so, what is its potential energy? 

Problem 4.1. By analogy to the force of gravitation (a) show that the electric force is conservative and 
(6) derive the formula for the potential energy of two charges, 4 and Q, separated by a distance r. 

Solution 

(a) The force of gravity is given in magnitude by F, = GmM/r2, and is a force of attraction along the line 
joining the masses. The electrical force between charges q and Q is given in magnitude by Fe = kqQ/r2, 
and is a force along the line joining the charges. This force is attractive for charges of opposite sign and 
negative for charges of the same sign. When this force is attractive it is identical to the force of gravity 
if one interchanges charges for masses and the constant k for G. Therefore, it is clearly also conserva- 
tive just as the force of gravity is conservative. If the force is between charges of the same sign, so that 
the force is repulsive, the work done by the force is the same as would be done by the same charges if 
they were of opposite sign, except that the work is the negative of that done by the attractive force. 
Since the attractive force is conservative, the work however depends only on the starting and ending 
points and not on what happened in between. This will also be true of the repulsive force which is 
therefore also conservative. Therefore the electric force is conservative, and work can be written in the 
form of a change in potential energy. 

(b) By analogy with the force of gravity the potential energy can be written down immediately by substi- 
tuting k for G and -qQ for mM. We need the minus sign because for two positive charges the work is 
of the opposite sign to that two positive masses. The potential energy of two charges q and Q separated 
by a distance r is then given by: 

( 4 . 0  up = k Q / r  = (1/47cdqQ/r 

A quick examination of signs shows that this equation works for arbitrary sign charges. 

This formula can be used to calculate the potential energy for arbitrary sets of charges. This follows 
because energy is a scalar, and the total potential energy is determined by adding together, algebrai- 
cally, the potential energy between pairs of charges. 

We note that in Eq. (4.2) the zero of potential energy has been chosen when r 4 00. If the charges 
are of the same sign then the potential energy increases as the charges approach each other. This follows 
because an external force must do positive work in forcing the charges closer together against their 
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mutual repulsion. When such charges are left to themselves they try to move to regions of lower poten- 
tial energy. This corresponds to the fact that the repulsive electrical force now does positive work by 
moving the charges further apart, thus causing a decrease in their potential energy. If the charges are of 
opposite sign then the potential energy becomes more negative (decreases) as the charges approach each 
other, and less negative (increases) as they are forced further apart. If left to themselves, these charges 
would move closer, seeking regions of lower potential energy. 

If we fix the position of one charge, Q, and allow the second charge, q, to move, then the potential 
energy will vary with the position of the second particle. One could say that the system changes its 
potential energy and that this change in potential energy depends on the change in the position of the 
second charge. We could associate a specific potential energy with each point in space in a manner 
similar to associating an electric field to each point in space. From Eq. (4.1) we note that this potential 
energy is proportional to the moving charge. The potential energy per unit charge, U&, then depends 
only on the position of the moving charge, as well as on the magnitude and sign of the stationary 
charge. Similarly, if one had many stationary charges, the potential energy of the entire system changes 
as the moving charge goes from one point to another, and is proportional to this moving charge. Again, 
the potential energy per charge depends only on the position of the moving charge and on the charac- 
teristics of the stationary charges. We can view this as a situation in which the stationary charges 
provide each point in space with a scalar value, called the potential, V, such that the potential energy of 
the system will equal qV if the moving charge is at that point in space. (We ignore here the potential 
energy between the fixed charges, which remains unchanged as the charge q moves.) The unit for poten- 
tial V is the volt (V), which is the same as J/C. As the charge moves there will be a change in potential 
energy, A U p  which will equal q times the change in the potential at each point. In summary: 

up = qv, ( 4 . 2 ~ )  

and AUp = qAV (4.2b) 

The quantity A V  is the “potential difference” between the two points, and depends on the stationary 
charges Qi that produce this potential at all points in space. It is independent of the characteristics of 
the moving charge, q, whose potential energy changes. The potential is related to the potential energy in 
the same manner that the electric field is related to the electric force. Whenever an electric field is 
produced by some set of charges, Qi, it acts as the source of the force distribution in space; it also can 
be thought of as the source of the potential distribution in space. If one places another charge, q, at 
some position in space, the electric field will exert a force of F = qE on the charge, and the system will 
have a potential energy of U, = q V ,  where E and V are the field and the potential at that point. The 
work done by the force F = qE in moving the charge q from one location to another is just 
-AUp = -qAV, from the usual relationship between work and potential energy. Clearly E and A V  are 
related in exactly the same way that F and AUp are related. This is discussed in greater detail in Sect. 
4.3. One can change E and V by changing the source charges, Qi and their position. 

Problem 4.2. Two charges, Q1 = 3.3 x 10-6 C and Q2 = -5.1 x 10-6 C are located at the origin and 
at x = 0.36 cm, respectively. A third charge, q = 9.3 x l O V 7  C, is moved from far away ( r  = clo) to a 
point on the y axis, y = 0.48 cm. 

(a) What is the potential energy between q and Q1 at this point? 

(6) What is the potential energy between q and Q2 at this point? 

(c) What is the change in potential energy of the system as one moves q from far away to this point? 

(6) What is the potential difference between the point at 00 and this point? 

Solution 

(a) The potential energy between any two charges is kqQ/r. Thus the potential energy between 4 and Q ,  is 
U ,  = (9.0 x 109K9.3 x l O - ’  ( 3 3 . 3  x 106 C)/0.48 x 10-’ m = 5.75 J. 
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(b) The distance between q and Q, is (0.36, + 0.482)’/2 cm = 0.60 cm. Thus the potential energy between q 
and Q, is U, = (9.0 x 109)(9.3 x 10-7 CX-6.3 x 10-6 C)/0.60 x 10-, m = -8.79 J. 

When q is far away the potential energy between q and each of the charges Q is zero. There is potential 
energy of the system between Q, and Q,, but that potential energy does not change as one moves q 
from point to point. As one moves the charge q to the final point the potential energy changes because 
of the interaction between q and the Q. The final potential energy is U, = 5.75 J - 8.79 J = -3.04 J. 
Therefore AU, = - 3.04 - 0 = - 3.04 J. 

(d) Since A V  = AUdq,  the potential difference is A V  = - 3.26 x 106 V. 

(c) 

4.2 POTENTIAL OF CHARGE DISTRIBUTIONS 

The previous problem illustrated how to calculate the potential energy in the case of two fixed point 
charges and a moving charge, and then how to use that potential energy to obtain the potential. We can 
clearly use this procedure to calculate the potential produced by any number of point charges at all 
points in space. We can thus calculate the potential produced by a collection of particles or by a 
distribution of charge. 

Problem 4.3. Calculate the potential produced by a point charge Q located at the origin at a point 
distant from the charge by r. 

Solution 

Our method is to calculate the potential energy, U,, at the desired point if one places a “test charge” q 

(4.34 

This is the potential produced by a single charge Q at a point that is distant from the charge by r .  If we 

(4.3b) 

at that point. Then the potential will equal UJq.  Using Eq. (U), we get U, = kqQ/r, and then: 

V = kQ/r = (1/4m0)Q/r 

have a collection of charges, Qi , then the potential will equal: 

V = k 1 QJri = (1/4ne,) 1 QJri 

Problem 4.4. A charge of 1.75 x 10-6 C is placed at the origin. Another charge of -8.6 x l O - ’  C is 
placed at x = 0.75 m. 

(a) What is the potential at a point halfway between the charges? 

(b) What is the electric field at that point? 

(c) If an electron is placed at that point, what force acts on it, and how much potential energy does it 
have? 

Solution 

The potential equals k QJri. Thus V = (9.0 x 109)[(1.75 x 10-6 C/0.375 m) + (-8.6 x l O - ’  
C/0.375 m)] = 2.14 x 104 V. Since V is a scalar we were able to add the values algebraically. 

To calculate the electric field we must calculate the magnitude and direction of the fields produced by 
each source and then add them vectorially. Thus E = E, + E,. Now I E, I = kQ,/r2 = (9.0 x 109)(1.75 
x 10-6 C)/0.375, = 1.12 x 105 N/C. Since Q, is positive this field is directed along + x. Similarly, 
I E, I = (9.0 x 109)(8.6 x 10-7 C)/0.3752 = 5.50 x 104 N/C. Since Q, is negative, the field points 
toward Q, which is also in the + x  direction. Then the total field is 1.67 x 10’ N/C in +x. 

An electron has a charge of - 1.6 x 10-l9 C. Therefore the force on it is F = qE = (1.6 x 10-l9 C) 
(1.67 x 10’ N/C) = 2.67 x 10-l4 N. The direction is opposite to E since q is negative, so F is in -x. 
The potential energy is qV = (- 1.6 x 10-l’ CK2.14 x 104 V) = -3.42 x 10- l 5  J. 
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Problem 4.5. Refer to the two fixed charges of Problem 4.4. At what two points on the x axis is the 
potential zero? 

Solution 

If the point of zero potential is between the charges, and the distance from the origin to the point is x, 
then the first charge is at a distance of x and the second charge is at a distance (0.75 - x) from the point. 
The total field is k[Ql/x + Q2/(0.75 - x)] = 0. Q1 is positive and Qz is negative. Substituting for the 
charges, we get: (1.75 x 10-6/x) = 8.6 x 10-7/(0.75 - x). Then (0.75 - x) = 0.49x, 1 . 4 9 ~  = 0.75, x = 0.50 
m. If the point of zero potential is not between the charges, and the distance from the origin to the point of 
zero potential is x, then the first charge is at a distance of x and the second charge is at a distance (x - 0.75) 
from the point. (Recall that in Eq. (4.3a), r is always positive.) The total field is k[Ql/x + Q2/(x - 0.75)J = 0. 
Again, Q1 is positive and Q2 is negative. Substituting values for the charges, we get: (1.75 x 10-6/x) 
= 8.6 x 10-7/(x - 0.75). Then (x - 0.75) = 0.49x, 0 . 5 1 ~  = 0.75, x = 1.47 m. A quick check for finite points 
on the negative x axis shows that the potential cannot vanish there. Of course, the potential also vanishes at 
x--, +CO. 

Problem 4.6. Four equal charges of 5.7 x 10-’ C are placed on the corners of a square whose side has 
a length of 0.77 m. 

(a) What is the electric field at the center of the square? 

(6) What is the electric potential at the center of the square? 

(c) If one brought a charge of 6.8 x 10-’ C from rest at 00 to the center of the square, what is the 
change in the potential energy of the system? 

(d) How much work must be done by an outside force to bring in this charge? 
Solution 

All the charges produce fields of the same magnitude at the center, since they have the same charge 
and are equidistant from the center. The charges at opposite corners produce fields that are in opposite 
directions, thus canceling each other. The total field at the center is therefore zero. 

The potential at the center is the sum of the contribution from each of the four charges. Each charge 
produces the same potential, kq/r ,  where r is the distance from the corner to the center. Thus T = 
0.77/42 = 0.544 m. The total potential is therefore V = q9.0 x lO’H5.7 x 10-’ C)/0.544 = 3.77 x 104 
V. We see that the potential can be non-zero even at a point where the electric field is zero. 

The change in the potential is the difference between the potential at the center of the square and the 
potential at CO. Thus A V  = 3.77 x 104 - 0 = 3.77 x 104 V. The change in potential energy is 
qAV = (6.8 x 10-7 CK3.77 x 104 V) = 0.026 J. Thus the system gained 0.026 J of energy. (This makes 
sense since all the charges are positive so potential energy increases as the fifth charge is brought 
closer.) 

The work done by outside (non-conservative) forces equals the change in the total mechanical energy 
of the system. Since there is no change in kinetic energy, the outside work will equal the change in the 
potential energy, Woutsidc = 0.026 J. 

Problem 4.7. A total charge of 5.4 x 10d6 C is uniformly distributed along a ring of radius 0.89 m. 

(a) What is the potential at the center of the ring? 

(6) What is the potential at a point on the axis of the ring at a distance of 0.98 m from the plane of the 
ring? 

Solution 

(a) All the charge is located at a distance of r = 0.89 m from the center of the ring. Each part of the charge 
therefore contributes the same scalar potential at the center, and the total potential is kQ/r 
= (9.0 x 109)(5.4 x 10-6 C)/(0.89 m) = 5.46 x 104 V. 
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(b) Now all the charge is located at a distance of ( r2  + x2)1/2 = (0.892 + 0.982)1/2 = 1.32 m, and the poten- 
tial is (9.0 x lO’X5.4 x 10-6 C)/(1.32) = 3.68 x 104 V. 

Note how easy it is to calculate the potential in Problem 4.7 in comparison with finding the electric 
field in a comparable problem in Chap. 3. This, of course, is a consequence of the potential being a 
scalar while the field is a vector. 

4.3 THE ELECTRIC FIELD-POTENTIAL RELATIONSHIP 

We know that the electric field is the force per charge and the potential is the potential energy per 
charge. The force and the potential energy are related by the work-energy theorem, and therefore the 
electric field and the potential must be related in the same manner. We would like to develop that 
relationship in more detail at this time. It is useful to do this by considering an opposing force to the 
electric force. 

When an outside force (non-electric) F, is exerted on a charge in an electric field, and is adjusted to 
always be equal and opposite to the electric force, then the positive (negative) work done by that force 
in moving the charge from one location to another will equal the increase (decrease) in the electric 
potential energy of the charge. If no work is done by this outside force either because the force is zero 
(hence there is no electric field) or the force is perpendicular to the direction in which the charge moves, 
then there will not be any change in the electric potential energy of the charge. Therefore there is a 
change in potential energy (and a corresponding change in potential) only if there is a component of the 
electric field in the direction of motion. If one moves perpendicular to E [along Ad, in Fig. 4-l(a)], there 
is no change in V. If one moves in the direction of E [along Ad,, in Fig. 4-l(a)], then, for constant E, the 
change in potential energy is IF I d  = -4 I El Ad,, , and the change in potential will equal 
A V  = - IEl Ad. If the field is at an angle of 8 with the direction of motion (Ad in Fig. 4-1), then the 
change in potential will equal A V  = - I E I Ad cos 8. If the field is not constant, then one must divide the 
path into small segments over which the field can be considered to be a constant and add the contribu- 
tion from each segment. Thus, in general; 

A V =  - C l E l c 0 ~ 8 A d ,  (4.4) 

where the sum is evaluated along the path of the particle [see Fig. 4-1(b)]. We have already learned that 
for a conservative force the result of this calculation depends only on the beginning and ending points, 
so we can choose any path between those points that we want in evaluating the sum. This relationship 
can be used to calculate A V  between any two points if the field E is known along a path joining those 
points. Eq. (4.4) also shows that an equivalent unit for E is V/m. 

Problem 4.8. Two parallel plates carry a surface charge density of +a, respectively, and are separated 
by a small distance d. Assume that the size of the plates is always large compared with the distance to 
the plates. 

E- ? 
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What is the electric field in the region between the plates? 

What is the potential difference between a point on one plate and a point on the other plate (e.g. 
points P ,  and P ,  in Fig. 4-2)? 

Which plate, the positive or the negative plate, is at the higher potential? 

Solution 

We learned in the previous chapter that the field between the plates points from the positive plate to 
the negative plate, and has a constant magnitude of 

Since the field is constant and pointing along the direction perpendicular to the plates, we choose our 
path in two parts starting at the point PI as shown in Fig. 4-2. Along path 1 we move parallel to the 
field to the second plate, and along path 2 we move along the second plate, perpendicular to E, until 
the final point. Along path 2 there is no A V  since we are moving perpendicular to E. Along path 1, 
1 A V  1 = 1 E 1 d = ad/&, . Thus the potential difference is, in magnitude, equal to ad/&, . 

Along path 1 the field is in the same direction as the displacement. Therefore, from Eq. (4.4, A V  = V, 
- V, = -ad/&,, and the potential decreases as we move from the positive plate (PI) to the negative 
plate ( P 2 ) ,  and the positive plate is at the higher potential, V,. This illustrates the fact that the potential 
always decreases as we move along the direction in which the field points. Since the field points away 
from positive charge and towards negative charge, the potential decreases as we move away from 
positive or toward negative charge. 

Problem 4.9. An isolated conducting sphere is charged with a total charge, Q, of 6.0 x 10-8 C, and has 
a radius of 1.35 m. 

(a) What is the field inside the sphere, and what is the field outside the sphere? 

(b) What is the potential at a distance r from the sphere, if r is outside the sphere? 

(c) What is the potential at the surface of the sphere? 

(d) What is the potential at a point r within the sphere? 

(e) If instead of a conducting sphere we had a thin uniform spherical shell of charge, again with no 
other charges nearby, how would the answers to (a)-(d) change? 

Solution 

(a) We learned in Chap. 3 that the field inside a conductor is zero, and that the field outside an isolated 
conducting sphere, where the surface charge is uniformly distributed, is the same as if all the charge 
were concentrated at a point at the center of the sphere. Therefore the field is kQ/r2 for r > R, and zero 
for r < R. 

0 -0 

Fig. 4-2 
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(b) The field outside the sphere is identical to that of a point charge located at the center of the sphere. 
The sum to be evaluated [Eq. (4.4)] for the case of the sphere is therefore just the result for a point 
charge, as long as we remain outside the sphere. Therefore the difference in potential between a point 
at r > R and a point at 00 is A V  = kQ/r. Since the potential at 00 is chosen to be zero, V = kQ/r. 

(c) At the surface r = R. Thus Vsurfacc = (9.0 x 109)(6.0 x 10-8 C)/1.35 m = 400 V. 

(d) The field inside the sphere is zero. Therefore if one moves from any point inside to any other point 
inside the sphere there will be no change in potential. The potential is the same everywhere within the 
sphere. At the surface the potential is 400 V, so the potential remains at 400 V for any other point 
r < R. 

(e )  By Gauss’ law (choosing concentric spherical surfaces of radius r < R )  since no charge is enclosed 
within the shell, the electric field will still be zero. The field outside could again be that of a point 
charge at the center so part (a) is unchanged. Similarly, the results of parts (b), (c) and (d) will be 
unchanged. 

Problem 4.10. A charge Q1 of 5.5 x 10-7 C is at the center of a conducting spherical shell that has an 
inner radius of 0.87 m and an outer radius of 0.97 m (see Fig. 4-3). The conducting sphere has a total 
charge of -2.3 x 10-7 C. 

(a) How much charge Qz is there on the inner surface of the conducting sphere, and how much charge 
Q3 is there on the outside surface? 

(b) By adding the contributions from all charges, calculate the potential at a point at a distance of 1.05 
m from the center. 

(c) By adding the contributions from all charges, calculate the potential at a point at a distance of 0.95 
m from the center. 

(d) By adding the contributions from all charges, calculate the potential at a point at a distance of 0.45 
m from the center. 

Solution 

(a) We know that in static equilibrium (no charges in motion) the electric field within the conducting shell 
is zero as it must be within any conductor. We draw a Gaussian surface at a radius within the conduc- 
tor, and note that the flux through that surface is zero, since the field is zero. Therefore the total charge 
inside that surface must be zero. The only charges inside the surface are on the inner surface of the 
shell and at the center. Therefore the charge on the inner surface must be Qz = - Q 1  = -5.5 x 10-’ 

Fig. 4-3 
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C. The total charge on the sphere is given as -2.3 x 10-7 C which must equal Q2 + Q3 = -2.3 
x lO-’ = Q 3  + ( - 5 . 5  x lO-’), giving Q3 = 3.2 x 10-7 C. 

(b) We showed in the previous problems that the potential of a point charge is V = kQ/r. We also showed 
that the potential due to a uniform spherical surface charge distribution at a radius R is equal to 

= kQ/r if T > R, and Kmside = kQ/R if r < R.  In our problem there are three charge distributions: 
a point charge at the center, a surface charge at R = 0.87 m and another surface charge at R = 0.97 m. 
If T = 1.05 m then we are seeking the potential outside each charge distribution. The total potential is 
then V = V, + V2 + V3 = kQ,/r + kQ2/r + kQ3/r  = (9.0 x lO9)[(5.S - 5.5 + 3.2) x 10-7 mJ/(1.05 m) 
= 2.74 x 103 v. 

(c) At r = 0.95 m, we are outside of charges Q ,  and Q 2 ,  but within charge Q 3 .  Therefore V3 = kQ3/R3 = 
(9.0 x lO’X3.2 x 10-7 C)/0.97 m = 2.97 x 103 V. Furthermore, V, + V, = k(Q, + Q2)/r  = (9.0 x 10’) 
(5.5 - 5.5)  x 10-7/0.95 = 0. Thus V = 2.97 x 103 V. 

Note. We could also have derived this result from the fact that E is zero within the conducting 
sphere, and therefore the potential within the sphere is the same as it is on the outer (or 
inner) surface. On the outer surface the potential, from part (a) is k(3.2 x 10-7)/0.97, which 
is the same as we found. 

(d) At T = 0.45 m, we are outside of the point charge but inside the two surface charges. The potential 
from the point charge is kQ,/r = (9.0 x lO’K5.5 x 10-7 C)/0.45 m = 1.1 x 104 V. The potential from 
the surface charges is V2 + V3 = k(Q2/R2 + Q3/R3)  = (9.0 x 10’)[(-5.5 x 10-7/0.87) + (3.2 x 
10-7/0.97)] = -2.72 x 103 V. The total potential is then 1.1 x 104 - 2.72 x 103 = 8.29 x 103 V. 

We have seen in the previous problems how to calculate the potential if the electric field is constant, 
or if the electric field is produced by a point charge, or if the electric field is produced by a spherical 
surface distribution. For other cases, one must use one of two methods to evaluate the potential differ- 
ence between two points: (1) calculate the electric field everywhere along a path and then use the sum in 
Eq. (4.4) to calculate the difference in potential, or (2) use the charge distribution to calculate the 
potential at every point using Eq. (4.3b) and then calculate the difference between the potential at the 
points. We summarize some results from using such methods, together with the results we have already 
obtained. 

For a point charge, 

V = (1/47t&,)Q/r 

For a collection of charges, 

V = (1/47t&,) C QJri 

( 4 . 3 4  

(4.3b) 

For a spherical surface charge at radius R ;  

V = (1/4ne,)Q/r for r > R ( 4 . 5 4  

and V = ( 1/47t~,)Q/R for r < R (4.5b) 

For a long wire, 

A V  = V2 - Vl = -(A/2mo) In (r2/r1) 

for rl and r2 any two perpendicular distances from the wire. 

(r, R 4 L); 
For a long cylinder of length L with symmetric surface charge on the cylindrical portion at radius R 

I/ = -(A/2xeo) In (r/R‘) for r > R ( 4 . 7 4  

V = -(A/2ncO) In (RIR’) for r < R (4.7b) 
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where R’ is an arbitrary distance. It is often useful to set V = 0 at the radius of the cylinder, which is 
equivalent to setting R’ = R. 

For a large, uniformly charged infinitesimally thin plate of surface charge density 6, 

A V =  V2 - V1 = - a ( I x J  - I x ~ ~ ) / ~ E O  (4.8) 

where I x2 I and I x1 I are perpendicular distances on either side of the plate, and I x1 I, I x2 I 6 L, where L 
is the distance to the edge of the plate. 

Problem 4.11. A coaxial cable (see Fig. 4-4) consists of a long, conducting wire, of radius R ,  with a 
linear charge density of A, and a long conducting coaxial cylindrical shell, with an inner radius R ,  and 
an outer radius R ,  , and with a symmetric linear charge density of -A. We assume the length to be 
much greater than any of the radial distances of interest. 

(a) What is the potential due to the cable at a point at a radial distance from the axis r, such that 
r > R , ?  

(b) What is the potential at a point within the outer cylindrical shell, at R ,  < r < R3 ? 

(c) What is the potential at a point between the wire and the cylinder at R ,  < r < R ,  ? 

(d) What is the potential at a point within the wire, at r < R , ?  

Solution 

(a) We use Eq. (4.74 for each of the three surface charges since the point in question is outside both 
cylindrical distributions. Then V = 0, since the total enclosed linear charge density is A - A = 0. 

(b) We note that the charge on the outer cylinder is all on the inner surface. This is because the field 
within the conductor is zero, and therefore, from Gauss’ law the total charge within a Gaussian surface 
must be zero. Then the charge on the inner surface must cancel the charge on the wire, and equal -A. 
Therefore the point within the cylinder is also outside all the charge distributions, and the result is the 
same as in (a), i.e. V = 0. 

(c) In this case the point in question is outside of the wire but within the surface distribution on the outer 
cylinder. Using Eq. (4.74 for the wire and Eq. (4.7b) for the cylinder we have for the potential: V = V, 
+ V2 = ( - A/2ne0) In (r/R’) - ( - A/2ae0) In (R,/R’) = ( -A/2na0) In ( r /R2)  (where we recall In (A /B)  
= In A - In B). 

(d) Since we are now within the inner conducting cylinder where the field is zero, the potential must equal 
its value at the surface. Thus, V = ( - A / ~ K E ~ )  In (R1/R2). 

Note. One could also get this result by adding the contributions of the two surface charge distri- 
butions. Then V = V ,  + V, = ( -A/2naO) In (R, /R‘)  - ( -n/2na0) In (R2/R’)  = ( -d/2na0) 
In (Rl/R2). 

Problem 4.12. Two large thin parallel plates are a distance D apart, and have surface charge densities 

Fig. 4-4 
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Fig. 4-5 

of & cr, as in Fig. 4-5. A large conducting plate, of thickness t ,  is placed with one side at a distance of d ,  
from the positive plate, as in the figure. The conducting plate has a charge density of 6’. 

(a) What is the surface charge distribution on the two sides of the conducting plate? 

(b) What is the difference in potential between the positive plate and the conducting plate? 

(c) What is the difference in potential between the positive and the negative plates? 

Solution 

(a) The field within the conducting plate must be zero, as it is within any conductor. Each charge distribu- 
tion produces a field of a/2&, pointing away from positive and toward negative charge. The field within 
the conductor has four contributions: (1) from the positive plate with charge distribution a, (2) from 
the negative plate with charge distribution -a, (3) from the side of the conducting plate near the 
positive charge with a charge distribution labeled al, and (4) from the other side of the conducting 
plate with a charge distribution a, = (a’ - a,). The fields produced are: E = E ,  + E ,  + E ,  + E ,  = 
(1/2~,)[a + B + a1 - (a’ - a,)] = (1/2&,)(2a + 20, - a’) = 0. Thus, a1 = (a’/2) - 6. On the other side 
of the plate the charge distribution is then a, = (a’/2) + a. (As a check we add a, + a2 to get a’.) 

(b)  To obtain the difference of potential between two points we calculate the field in the region between 
the points and, for a constant field perpendicular to the plates use the fact that AV = - E A x ,  where 
AV is the final-minus-initial potential as we move through Ax. In the region between the positive plate 
and the conducting plate, the field is E = [a - (a’/2)]/eO to the right. We get this result either by 
adding the field from all four distributions or by using Gauss’ law. By adding the contributions we get 
E = (1/2~,)[0 - (d/2 - a) - (a’/2 + a) - (-a)] = [a - (a’/2)]/eo. This field is to the right if the 
number is positive. Then the difference of potential between the positive plate and the conducting plate 
is given by AV = V c  - V ,  = - [a - (a’/2)]dI/&,, or V+ - V,  = [a - (a’/2)]/&,. 

Using the same procedure we obtain the field between the conducting plate and the negative plate to 
be E = [a + (a’/2)]/~, , Then the difference of potential between the conducting plate and the negative 
plate is given by A V  = V- - V, = - [a + (a’/2)]d,/eO . The difference of potential between the positive 
and the negative plates is therefore: V+ - V- = (V,  - V,) + ( V ,  - V - )  = [a - (a’/2)]dl/e0 + [a 

(c) 

+ (af/2)ld,/&o = (I/&,)[ 44 + d , )  + (a’/2)(d, - 4)l. 

4.4 EQUIPOTENTIALS 

In our discussion so far we have learned how to use information about the electric field to obtain 
the potential difference between two points. We now shift our attention to the reverse process, obtaining 
the electric field from a knowledge of the potential. At every point there is an electric field pointing in 
some direction. If we move to a different point along that direction, then the potential will change. 
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However, if we move to a different point perpendicular to that direction, the potential will not change. 
Thus, for example, for the uniform field between large parallel plates, for every plane perpendicular to E, 
the potential remains the same at every point in the plane. Even for non-uniform fields, if we continue 
moving from point to point, always in a direction perpendicular to the electric field at that point, we 
will sweep out a surface with all points on that surface at the same potential. This surface is called the 
“equipotential surface”. This idea can be used to obtain the direction of the electric field at any point if 
we know the potential everywhere in the region. We do this by sweeping out the various equipotential 
surfaces, and noting that the electric field lines are perpendicular to those surfaces. Once we have the 
direction of the electric field we can easily obtain its magnitude. We move a distance Ad in the direction 
of the electric field, between nearby equipotential surfaces and note the difference in potential. We know 
that along the direction of the electric field AV = -EAd, giving E = -AV/Ad. The minus sign means 
that E is positive in the direction that A V  is negative, i.e. E points from high to low potential. Thus, a 
knowledge of how V varies in a region around a point allows us to obtain the magnitude and the 
direction of the electric field at that point. 

Problem 4.13. The potential produced by a point charge is V = kQ/r.  Use this information to: (a) 
determine the shape of the equipotential surfaces, (b) determine the direction of the electric field at any 
point and (c) determine the actual value of the electric field at any point. 

Solution 

(a) The potential at a point at a distance r from the charge is given as V = kQ/r.  All other points at the 
same distance r from the charge have the same potential. Therefore the equipotential surface consists 
of all points equidistant from the source at a distance r. This is the surface of a sphere of radius r. The 
equipotential surfaces are therefore concentric spherical surfaces. 

(b) The direction of the electric field is perpendicular to the equipotential surfaces. That direction, for 
spheres, is in the direction of the radius. Thus the electric field must point along a radius. We know 
that it points from high to low potential. If Q is positive, then the potential decreases as r increases. 
Therefore the field points in the direction away from the charge, as we expected. For a negative charge 
the potential becomes less negative as r increases, which means that V increases as r increases. Then E 
points toward smaller r, or toward the center. 

(c) The magnitude and direction of E along a radius is given by I E I = AV/Ad,  if Ad is along the direction 
of the field. Here Ad = Ar. If we move along a radius from rl  to r 2 ,  the difference in potential is 
AV = V2 - V, = kQ(l / r2  - l / r , )  = kQ(r, - r2 ) / r1r2 .  For very small Ar = r2 - rl we can set rl  = rz = 
r in the denominator to get AV = - kQAr/r2. Then E = - AV/Ar  = kQAr/r2Ar = kQ/r2, as expected. 

Problem 4.14. Two large parallel plates carry charge distributions of +a. The positive plate is at 
x = 0, and the negative plate is at x = d, where x is measured perpendicular to the plates. The potential 
at any point can be shown to be given by I‘ = Vo(l - x/d) when 0 c x < d,  i.e. between the plates, and 
where Vo and 0 are the potentials at the positive and negative plates, respectively. 

(a) What are the equipotential surfaces? 

(b) What is the direction of the electric field at a point located at a distance x from the positive plate? 

(c) What is the magnitude of the electric field at this point? 

Solution 

(a) The potential at a point at a distance x from the positive plate is given as V = Vo(l - x/d). All other 
points at the same distance x from the plate have the same potential. Therefore the equipotential 
surface consists of all points equidistant from the plate at a distance x. This surface is a plane parallel 
to the plates. The equipotential surfaces are therefore planes parallel to the plates. 

(b) The direction of the electric field is perpendicular to the equipotential surfaces. That direction, for a 
plane parallel to the y-z plane, is in the direction of x. Thus the electric field must point along x. We 



112 ELECTRIC POTENTIAL AND CAPACITANCE [CHAP. 4 

know that it points from high to low potential. The potential decreases from V, to zero as one 
increases x from zero to d.  Therefore the field is in the + x direction. 

(c) The magnitude of E is given by I E I = AV/Ax ,  if Ax is along the direction of the field. If we move along 
the field from x 1  to x 2 ,  the difference in potential is AV = V2 - V, = V,[(l - x 2 / 4  - (1 - x , /d ) ]  = 
Vo(xl - x2) /d  = - V, Ax/d .  Then I E I = V, Ax/dAx = Vo/d, as expected. 

Problem 4.15. The electric field lines for a particular situation are shown in Fig. 4-qa). Along the 
curved field line OACD the electric potential decreases linearly by 4.0 V every 3.0 m. At point A the 
potential, VA, is 40 V. 

(a) On the figure, draw the direction of the electric field at A. 

(6) Calculate the magnitude of the electric field at A. 

(c) Calculate the potential, Vc , at point C, which is 3.0 m from A. 

(6) Calculate the potential, V,, at point B which is 0.010 m along a line perpendicular to the field line 
through A. 

Solution 

(a) The field is tangent to the electric field line at any point. It points from high to low potential. Since the 
potential is decreasing as one moves along the line toward C, the field points in that direction. The 
direction is shown in Fig. 4-6(6). 

(6) The magnitude of the field is equal to A V / A x  if one moves along the direction of E. When moving 
from A to C one is indeed moving in the direction of E, and AV/Ax  = 4.0 V/3.0 m = I E 1 = 1.33 V/m. 
Ordinarily this would be the average magnitude of E over the 3.0 m distance, but because the potential 
decreases linearly it is the actual magnitude at any point along the line. 

We can obtain V, from AV = V, - V, = -EAx = -(1.33 V/m)(3.0 m) = -4.0 V. Then V, = 40 (c)  
- 4.0 = 36 V. 

(6) Point B is along a direction perpendicular to the electric field. Therefore the potential does not change 
as one moves from A to B. Thus V, = V' = 40 V. 

The result that we have obtained for calculating the electric field from a knowledge of the potential 
everywhere can be written in a different form. If one moves a small distance Ax in the x direction from a 
given point, and the electric field makes an angle 8 with the x axis at that point, then the change in 
potential in that direction, AVx = -E cos 8 Ax = - - E X A x .  Thus E, = -AVx/Ax, where AVx is the 

Y \' 

Fig. 4-6 
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change in V as one moves in the x direction. Similarly, E, = - AV,/Ay, and E, = - AK/Az. If we have 
the three components of the vector E, then we have all the information needed to characterize E at that 
point. The vector, whose components are determined by calculating the rate of change of V in each 
direction (A V,/Ax, A V,/Ay, A K/Az), is called, in mathematical terminology, the gradient of V ,  and 
written as VV. Then our expression relating the electric field to the potential at every point in space can 
formally be expressed as E = - V V.  As you may have guessed this is a calculus relationship and allows 
one to carry out sophisticated analyses beyond the scope of this book. 

Problem 4.16. Fig. 4-7 shows the value of the electric potential at various points in the x-y plane. The 
potential at the origin is 75 V. At points along the x and y axes, at a distance of 0.65 m from the origin, 
the potentials are as shown. 

(a) Calculate the x and y components of the electric field at the origin. Assume the potential varies 
linearly with distance in both the x and y directions. 

(6) What is the magnitude and direction of the electric field at the origin? 

(c) What can one say about the electric field at other points near the origin? 

Solution 

(a) To get E,  we must calculate E,  = -AV.Ax  = -(65 - 75)V/0.65 m = 15.4 V/m. Similarly, E,  = 
-A%/Ay = -(80 - 75)V/0.65 m = -7.7 V/m. Thus the field has components in + x  and in -y  of 
15.4 V/m and 7.7 V/m, respectively. 

(b) E = (Ex2 + Ey2)'l2 = 17.2 V/m. If 0 is the angle of E below the positive x axis, we have tan0 = 

(c) Since the potential varies linearly in the region from - 0.65 m to + 0.65 m in both the x and y 
directions, both E ,  and E ,  will be constant in that region. Thus E will be uniform for all points near 
the origin. 

I E,/E, I = 0.50 + 8 = 26.60. 

Problem 4.17. 

(a) Show that the surface of a conductor (in static equilibrium) is always an equipotential surface 
irrespective of the charge on the surface or of nearby charges. 

(6) Show that a hollow region inside a conductor that has no charges in it has no electric field in it as 
well. 

Y 

80 V I 
Origin = 75 V. 
Potentials are shown on x and 
y axis at 0.65 m from the origin. 

x 

Fig. 4-7 
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Fig. 4-8 

Solution 

(a) Consider the conductor shown in Fig. 4-8 with surface S, and consider two points on the surface, a and 
b. We can use Eq. (4.4) along any path leading from a to b to obtain A V  = Vb - V,  , including the path 
shown through the conductor. For the path chosen, which is wholly in the conductor, E is zero 
everywhere along the path. Therefore, A V  = 0 -+ V, = V, . Since this is true for all points a and b on the 
surface, the surface must be an equipotential. (Indeed, the whole conductor is an equipotential, by the 
same argument.) 

(b) Consider the hollow in the conductor shown in Fig. 4-8(b). Suppose there were an electric field at any 
point c in the hollow. If we trace the electric field line through point c it would have to start at some 
point a on the inner surface and end at some other point b. This is because the electric field lines 
always start and end on charges or go off to infinity. Since the electric field points in the same direction 
everywhere on the field line from a to b, applying Eq. (4.4) to the path along the field line, cos0 is 
always equal to one and the sum must be a positive (non-zero) value. Therefore, Vb - V, # 0 and the 
surface cannot be an equipotential. Since we have just shown in part (a) that it must be an equipo- 
tential, our hypothesis that an electric field existed at point c cannot be true. Since point c was chosen 
arbitrarily, we must have E = 0 at all points in the hollow. (This implies that the hollow is also an 
equipotential region with the same value as the conductor.) This result is no longer true if a charge 
were placed in the hollow region. 

4.5 ENERGY CONSERVATION 

The potential energy associated with the electrical force can be used in the same manner as any 
other potential energy. We note that the potential energy of any charge is given by 4 V ,  and the change 
in potential energy that is used in most energy related problems is AU, = 4AV. A positive charge gains 
energy as it moves to a region of higher potential (AV positive) and, unless restricted by other forces, 
will tend to move to regions of lower potential. A negative charge, such as an electron, will lose energy 
as it moves to a higher potential (q negative and A V  positive), and therefore tends to move to a region 
of higher potential. When an electron moves through a difference of potential of one volt it gains or 
loses 41) = 1.6 x 10- l 9  J of energy. This amount of energy is called an electron-volt, or eV. If the 
electron moves through a difference of potential of x volts, the electron gains or loses x electron-volts of 
energy. This is a very convenient unit of energy to use whenever one discusses the motion of an electron, 
or other particle with a similar charge, since the energy the particle gains (loses) in eV is numerically 
equal to the difference of potential in volts through which it moves. 
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Problem 4.18. An electron moves from the positive to the negative terminal of a 9 V battery. How 
much potential energy did it gain or lose? Did it gain or did it lose potential energy? 

Solution 

The change in potential energy was 9 eV, since the electron moved through a difference of potential of 
9 volts. This corresponds to (9 eVK1.6 x 1O-I9 J/eV) = 1.44 x J. Since the charge on the electron is 
negative, and the change in potential was also negative, the electron gained potential energy. This is in 
accordance with our discussion that negative charges tend to move to higher potentials in order to lose 
potential energy, and they gain potential energy in moving to lower potentials. 

Problem 4.19. We want to produce protons with a kinetic energy of 4.3 x 1O-l’ J. Through what 
difference of potential should we accelerate them in order to obtain that kinetic energy, assuming that 
they start from rest and that there are no other forces present? 

Solution 

Since only the electric force is present, and the electric force is conservative, we can use conservation of 
energy in this problem. If we start with a stationary proton, then the proton has no initial kinetic energy. 
The increase in kinetic energy must equal the decrease in potential energy. Thus the positively charged 
proton must move through a difference in potential that will result in the loss of 4.3 x 10- ’’ J. This means 
that it must move through A V  such that qAV = -4.3 x l O - ”  J, or A V  = (-4.3 x 10-” J)/1.6 x 10-19 C 
= - 2.69 x 104 V. Alternatively, we could have converted 4.3 x 10- ’’ J into eV by dividing by 1.6 x 10- 
J/eV, obtaining 2.69 x 104 eV. Then we can say that a proton must have fallen through a decrease of 
2.69 x 104 V to lose that amount of potential energy. 

Problem 4.20. A proton is moving directly toward a fixed nucleus containing 23 protons. The speed of 
the proton when it is at a distance of 5.8 x 10-9 m from the nucleus is 2.4 x 106 m/s. The proton has a 
charge of 1.6 x 10-19 C and a mass of 1.67 x 10-27 kg. 

(a) What was its kinetic and potential energy at this initial distance? 

(b) At what distance from the nucleus does the proton stop, i.e. what is the distance of nearest 
approach? (Assume the nucleus remains stationary.) 

Solution 

(a) The kinetic energy of the proton is (1/2)m,u2 = (0.5H1.67 x l O - ”  kgK2.4 x 106 m/s)’ = 4.81 x 10-l’ J. 
The potential energy is U ,  = kqQ/r = (9.0 x 109)(1.6 x 10-l9 C)(23 x 1.6 x 10-l9 C)/(5.8 x 10-9 m) 
= 9.14 x 10-l9 J. The total energy is therefore nearly all kinetic energy and equals 4.81 x 10-l’ J. 

(b) By conservation of energy, the total energy must be the same as the proton moves toward the nucleus. 
At the point of nearest approach, the kinetic energy is zero, since U = 0. Therefore, the potential energy 
must equal the original energy. Thus, kqQ/r = 4.81 x 1O-I’ J = (9.0 x 1O9X1.6 x 10-l9 C) 
(23 x 1.6 x 1O-l’ C)/r = 5.30 x 10-27/r. Then r = 1.10 x 10-” m. 

Problem 4.21. Four charged particles are placed at the corners of a square of side 0.39 m. The particles 
have charges of 2.3 pC, - 5.6 pC, 7.9 pC and - 1.3 pC as in Fig. 4-9. 

(a) How much work was done by outside forces to place those particles in their positions if they were 
originally very far away? 

(b) If an electron starts with no velocity very far away, what velocity does it have when it reaches the 
center of the square? (me = 9.1 x 10-31 kg) 
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-5.6 jlC 7.9 jlc 

2.3 jlC -1.3 FC 

Fig. 4-9 

Solution 

(a) We will assemble the particles one at a time. To place the first particle (2.3 pC) in place requires no 
work (W, = 0) since there are no forces present as yet. To place the next particle (- 5.6 pC) in place the 
outside work W2 must be equal to the change in potential energy. This equals W2 = kQ1Q2/r12 = (9.0 
x lO’K2.3 x 10-6 C)(-5.6 x 10-6 C)/0.39 m = -0.30 J. To place the next particle we must again 
supply the added potential energy. This additional potential energy is due to the interaction with both 
of the particles already in place. Thus W, = kQ3(Ql/r13 + Q2/~23) = (9.0 x lO’W7.9 x 10-6)[(2.3 
x 1Ob6/0.39J2) + (-5.6 x 10-6/0.39)] = -0.72 J. Similarly, to add the fourth particle requires 
work of W4 = kQ4(Ql/r14 + Q2/r2,+ + Q3/rS4) = (9.0 x log)(- 1.3 x 10-6)[(2.3 x 10-6/0.39) + (-5.6 
x 10-6/0.39J2) + (7.9 x 10-6/0.39)] = - 0.19 J. The total work is therefore Kotr, = W, + W2 + W, 

(b) With all the four particles in place, the potential at the center is V = V, + V2 + V, + V‘ = k(Q, + Qz 
+ Q3 + Q4)/r = (9.0 x 109)(2.3 - 5.6 + 7.9 - 1.3) x 10-6/0.195J2 = 1.08 x 10’ V. At a large distance, 
the potential is zero. Therefore the electron loses potential energy equal to 1.08 x 10’ eV. This is 
converted into kinetic energy. Then, (1/2)rno2 = (1.08 x 10’ eVX1.6 x 10-‘’ J/eV) = 1.73 x 10-l4 J. 
The mass of an electron is 9.1 x 10-31 kg, so u2 = 2(1.73 x 10-14)/9.1 x l O - , l  = 3.80 x 1OI6, and 
o = 1.9 x 108 m/s. 

+ W ,  -0.30 - 0.72 - 0.19 = -1.21 J. 

Problem 4.22. Two large, thin parallel plates, of length L, are perpendicular to the x axis and carry 
charge distributions of +a (as in Fig. 4-10). The positive plate is at x = 0, and the negative plate is at 
x = d. The potential at any point is given as I/ = V,(1 - x/d) for 0 < x < d, i.e. between the plates. An 
electron starts at the bottom, halfway between the plates, with an upward speed of uo . The electron just 
passes the end of the plate at the top. Assume that the field is uniform throughout the region between 
the plates, and the potential is as given above. Give your answers in terms of L, d, u o ,  CT and e (where e, 
as always, is the magnitude of the electron charge). 

(a) How much kinetic energy, A K ,  did the electron gain until it leaves the region between the plates? 
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Fig. 4-10 
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(b) What is the x component of the velocity of the electron? 

(c) How much time does it take for the electron to move through the plates? 

Soh tion 

(a )  We will use conservation of energy to solve this part of the problem. The gain in kinetic energy A K  
must equal the loss in potential energy. This loss is equal to eAV = e(& - r/l) = e(V, - V,d/2) = 

eV,d/2. Thus the gain in kinetic energy is eVod/2. Recalling that the potential difference across the 
plates is just (V, - 0) = Ed = ad/&,, we have finally AK = ead2/2c,. 

( b )  The gain in kinetic energy is K ,  - Ki = (+)rn(uf2 - viz) = ( ~ ) r n ( v f x Z  + vfy2 - ciY2) where we recall uiX = 
0. Now, uy = oo does not change, so AK = (4)rnvfx2 and using our results in (a)  we get: cfx = 
[(e/m)ad2/&,] 1’. 

(c) Since U, does not change, the time to move a distance of L in y is t = L/o, . 

Note. If we wanted we could solve for V , ,  since we must also have ufx = at where acceleration a = 

1 (e/m)E 1 = (e/m)a/E,, and we can solve for t and insert in t = L/u, . 

4.6 CAPACITANCE 

We have seen that positive work is required by an outside force to separate opposite charges that 
were initially together. For instance, we may have two metal surfaces which were initially uncharged, 
and then remove negative charge from one surface and place this charge on the other surface. The first 
surface that lost negative charge becomes positively charged, and the other surface gains the same 
negative charge. The more charge that we transfer the harder it becomes to transfer the next unit of 
charge because of the Coulomb forces between the charges, and the more work we have to do to 
transfer additional charge. This work is manifested in the resultant potential energy of the final distribu- 
tion of charge. 

When a given distribution of charge is reached, we wish to be able to calculate the potential every- 
where in space. This will allow us to determine the energy necessary to bring another charge from one 
location to another. We know that each conductor surface will be an equipotential surface once charges 
have reached their equilibrium positions. Therefore each surface has its own potential and potential 
differences exist between the various surfaces. For a particular pair of conductors we label this potential 
difference AV. Since we can always set our zero of potential at our will, we can take one of the surfaces 
to have zero potential and the other to have a potential V which will equal AV. Therefore we will call 
the potential difference between the two surfaces V .  

Let us consider the case of two isolated conductors (labeled 1 and 2) with charge +Q on one and 
-Q on the other, and a potential difference V between them. Depending on the shape of the conductors 
and their positions relative to each other, the charges on the conducting surfaces will distribute them- 
selves with some definite (but not necessarily uniform) charge distribution, o1 and c2. In general, o1 and 
c2 will vary from point to point on the respective surfaces. In principle, the potential and electric field 
everywhere outside and on the conductors, can be determined by dividing the surfaces into tiny seg- 
ments and calculating the potential (or electric field) at any point by adding the contributions of all the 
electric charges in all the tiny segments. It is not hard to see that if we doubled (or halved, or tripled) the 
electrical charges in all segments on both surfaces we would not disturb the equilibrium on those 
surfaces, and furthermore the potential and electric field everywhere would also double (or halve, or 
triple) as a consequence. This is equivalent to saying that if we doubled the total charges (Q and -Q) on 
both isolated conductors (and waited for equilibrium to return), the potential V between them would 
double (as would the surface charge distributions c1 and c 2 ,  everywhere on the surfaces). From this we 
conclude that I/ is proportional to Q, as long as the geometry stays the same. Thus, if for example we 
transfer charge between one conductor and the other, V would increase in proportion to the increases 
in & Q on the surfaces. We can therefore write V = (l/C)Q, where 1/C is the constant of proportion- 
ality, or equivalently, Q = C V ,  and the constant C is called the capacitance of the system. This constant 
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C depends on the geometry of the conductors, their size, shape and position, but it does not depend on 
the charge on the plates. For any particular geometry we can calculate its capacitance by assuming a 
certain charge and calculating the resultant V .  Then C = Q / V ,  and for any other Q this ratio remains 
the same. The unit for capacitance is the farad (F). A capacitance of one farad is very large, and more 
common capacitances are pF (10-6 F) or pF (10-9 F). If we build a unit containing two conductors 
with relatively large surfaces close to each other (but not touching) we call this object a capacitor whose 
capacitance is C. The name derives from the fact that C represents the capacity of the two conductors to 
store charge on their surfaces per unit potential difference (per volt) between them. A large capacitance 
means that the capacitor holds a lot of charge per volt, while a small capacitance means that only a 
small amount of charge is held per volt. We will first discuss the calculation of capacitances for several 
specific geometries, and the use of these results. Then we will discuss the energy needed to charge a 
capacitor and the interpretations of these results. The most common capacitor geometry is that of two 
close parallel, conducting plates. 

Problem 4.23. A “parallel plate capacitor” consists of two parallel plates, of area A, separated by a 
small distance d and carrying charges of & Q (as in Fig. 4-11). Assume that the field is uniform 
throughout the region between the plates. 

(a) What is the field between the plates? 

(b) What is the potential difference between the plates? 

(c) What is the capacitance of this parallel plate capacitor? 
Solution 

(a) The field was calculated in Problem 3.23, and equals E = o/co. Ignoring edge effects, the surface 
charge, o, is uniformly distributed and U = Q/A, giving E = Q/cOA. This is a uniform field pointing 
from the positive to the negative plate. 

(b) As shown in Problem 4.8(b), the potential difference between the plates is just V = Ed = od/co = 
Qd/&,A. The positive plate is at the higher potential. 

(c) Using the results of (b), we get C = Q/V = Q/(Qd/coA) = cOA/d. 

Problem 4.23 shows that the capacity of a parallel plate capacitor can be written as 

C = A/d (parallel plate capacitor) (4.9) 

Note. The capacitance (ability to hold, or store, charge per volt) increases in proportion to the 
cross-sectional area of the plates, A. Thus doubling the area doubles C. The capacitance 
also varies in inverse proportion to the separation distance, d. Thus halving d doubles C as 
well. 

+P 

+ 
Fig. 4-11 
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Problem 4.24. A parallel plate capacitor has a capacitance of 2.5 pF and an area of 156 m2. 

What is the distance between the plates? 

If one applies a voltage of 75 V to the capacitor how much charge is collected on each plate? 

How much work is needed to move an additional charge of 1.8 x 10d8 C from the negative to the 
positive plate? 

Solution 

(a) The capacitance is given by C = eOA/d = 2.5 x 10-6 = (8.85 x 10-12)(156 m2)/d. Thus 
d = 5.52 x 10-4 m. 

(b) The charge is given by Q = CV = (2.5 x 10-6 FX75 V) = 1.88 x 10-4 C. 

(c) Since the charge we are moving is small compared to the charge already there the potential will hardly 
change as we move the charge. Therefore the work needed, which is just the increase in potential 
energy, will be given by AQV = (1.8 x 10-* CX75 V) = 1.35 x 10-6 J. 

Problem 4.25. A parallel plate capacitor is built from plates with areas of 888 m2 each and a separa- 
tion of 1.6 x 10-4 m. The maximum electric field that can exist in the capacitor before the air ionizes 
causing sparking is 3.1 x 106 V/m. 

(a) What is the capacitance of this capacitor? 

(b) What is the maximum voltage that can be applied to this capacitor? 

Solution 

(a) The capacitance is given by C = cOA/d = (8.85 x 10-'2)(888 m2)/(1.6 x 10-4 m) = 4.91 x 10-5 F. 

(b) The maximum electric field that the capacitor can stand before electrical breakdown is 3.1 x 106 V/m. 
The electric field is equal to Q/eOA = CV/eO A = 3.1 x 106. Thus V = (8.85 x 1O-I2)  (888 m2) 
(3.1 x 106 V/m)/4.91 x 1 O W 5  F = 496 V. This could have been derived more simply using the relation- 
ship that V = dE for a uniform field, giving V = (3.1 x 106 V/m)(1.6 x 10-4 m) = 496 V. 

Problem 4.26. A capacitor consists of two thin concentric hollow metal spherical shells of radii rl and 
r2 (rl  < r2) with charges Q and -Q, respectively 

(a) What is the capacitance of this capacitor? 

(b) Show that all the charges reside on the outer surface of the inner shell and the inner surface of the 
outer shell. 

Solution 

The potential produced by a uniform spherical shell of charge Q was calculated earlier and given by 
Eqs. (4.5): V = (1/4mO)Q/r for r > R and V = (1/471&o)Q/R for r < R. On the outer surface of the outer 
spherical shell the potential is zero, since we are outside of each shell and the potential is therefore 
V = V, + V2 = kQ/r + k(- Q)/r = 0, r 2 r2. On the outer surface of the inner shell the potential from 
sphere two is still -kQ/r2  but the potential from the first sphere is kQ/r, .  Thus V = kQ(l/r, - 1/r2), 
which is also the potential difference between the shells (since the potential at the second shell is zero). 
Then C = Q/V = 4m0/(1/rI - 1/r2). 

Since the potential is constant everywhere in the outer shell and beyond (actually zero) the electric field 
is zero everywhere in this region. Since E = c/e0 just outside a conducting surface, we have = 0 on 
the outside of the outer sphere, and all the charge, - Q, resides on the inside surface. Similarly, in the 
hollow region within the inner shell the potential is constant [(Eq. (4.5)] and the electric field again 
vanishes. Thus cr/eo on the inner surface vanishes as well, and the entire charge Q resides on the outer 
surface of the inner shell. 
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Problem 4.27. The two shells of Problem 4.26 have radii of 1.6 m and 1.8 m. 

(a) What is the capacitance of this arrangement? 

(b) How much voltage must be applied across the shells to store a charge of 3.7 x 10-8 C on the 
shells? 

Solution 

(a) The capacitance was derived in the previous problem and equals C = 4m,/(l/r, - 1/r2) = 4n(8.85 
x 10-*2)/[l/1.6 m - 1/1.8 m) = 1.60 x 10-9 F = 1.6 nF. 

(b) The charge is given by Q = C V ,  so V = Q/C = (3.7 x 10F8 C)/(1.6 x 10-9 F) = 23.1 V. 

4.7 COMBINATION OF CAPACITORS 

Capacitors have many applications in electrical circuits, both using constant sources of voltage such 
as batteries (Chap. 3), and using time varying sources of voltage (Chap. 9) such as supplied by the 
electric utility. Often one-uses combinations of capacitors and we inquire into the result of making such 
combinations. There are two basic different ways in which one can combine capacitors. The two are 
called series and parallel combinations. We will see later that the same types of combinations can be 
applied to resistors as well. In what follows we will assume that the pair of close conductors constituting 
a capacitor is sufficiently far from the conductors making up the next capacitor, that we do not have to 
worry about “cross-capacitance” between the two capacitors. In addition, all connections between 
capacitors are made with conducting wire, and the conductors and wires so connected must all be at the 
same potential when we have equilibrium. For visual simplicity we will carry out our discussion in the 
context of parallel plate capacitors. 

First we discuss what is called the parallel connection of capacitors. Here one side of all the capa- 
citors are kept at a common potential by being connected to each other by a conducting wire, while the 
other sides of all the capacitors are kept at a (different) common potential by connection to a second 
conducting wire. This is illustrated in Fig. 4-12. Here the two sides of C1 (the symbol for a capacitor is 
-1 I-) are connected to points a and b by conducting wires and so are the two sides of capacitor C 2 .  If 
one has three capacitors in series one would connect C3 between the same two points. The left sides of 
the capacitors are thus at a common potential, and the right sides are at a different common potential. 
The potential difference across each capacitor is the same, since in each case it will equal I/a - Vb. This 

I I  
I I  

Fig. 4-12 
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is the defining characteristic of all parallel circuits: each branch has the same potential difference or 
voltage. We will use the next problem to develop the properties of a parallel circuit. 

Problem 4.28. Consider the two capacitors in Fig. 4-12, connected between a difference of potential, 
V = - v b .  

(a) What is the charge on the plates of each capacitor? 

(b) What is the total charge collected on the equipotential surfaces connected to points a and b? 

(c) If one replaced the two capacitors with a single capacitor, collecting the same charge between the 
two points, what capacitance would it have? (This is called the “equivalent” capacitor.) 

(d) If C1 = 2.3 pF and C2 = 5.7 pF, what is the equivalent capacitance of the combination? 

Solution 

(a) Q ,  = C, V and Q ,  = C, V ;  i.e., if V,  > V,, Q ,  and Q2 will appear on the left plates of 
respectively, while - Q ,  and - Q2 will appear on the right plates of C, and C2 . 

(b) The total charge is just the sum of Q ,  and Q, on side a and -(Q1 + Q,)  on side b. 

C ,  and C,, 

(c )  The equivalent capacitance would have to be charged to ( Q ,  + Q,)  when the potential difference across 
it is V .  Thus, C,,V = Q ,  + Q2 = C, I/ + C, V = (C, + C,)V. Dividing out by V we get: 

C,, = C, + C, (parallel combination) (4. I Oa) 

(d )  Using the given values for C, and C, we get C,, = (2.3 + 5.7) pF = 8.0 pF. 

If capacitor C, were also connected as shown in Fig. 4-12 the same reasoning as in Problem 4.28 
would lead to Ceq = C, + C, + C, . In general, for any number of parallel capacitors, 

(4.20b) 

The other possible way to combine two capacitors is in series. Consider the two capacitors in Fig. 
4-13. Here one plate of the first capacitor is connected to point a and the second plate is connected to 
the first plate of the next capacitor through point c. The second plate of the second capacitor is con- 
nected to point b. If there are more capacitors in series then the second is connected to the third and so 
on until the last is connected to point b. Now the potential across C, need not be the same as is the 
potential V 2  across C, , since V, = - Vb and points a and b are not connected. 
Indeed the total voltage between a and b is V = Vl + V,. If we examine the figure more closely, we note 
if the first plate of C ,  accumulates charge +Q1 (inserted or removed through point a), then the second 
plate of C ,  will have a charge of ( -Q1). This follows because if it did not, the electric field immediately 
outside the plate would not vanish, and charges would flow in the wire (through point c)  until the field 
vanished. This would occur when the charge is -Q1. From where did this -Q1 charge come? It must 
have come from the first plate of the second capacitor. In that case the second capacitor has the same 
charge as the first, +Q1 on its first plate. Using the same reasoning as for the first capacitor, we 
conclude that the second capacitor will have charge -Q1 on its second plate (where we presume that 
point b is connected to other parts of the circuit to or from which charges can flow). We are now ready 

- I/c, and V2 = 

I{ 
Fig. 4-13 
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to calculate the equivalent capacitance that we could use to replace C1 and Cz . 

Problem 4.29. Consider the two capacitors in series in Fig. 4-13. Calculate the equivalent capacitance. 

Solution 

We have just shown that each capacitor contains the same charge which we call Q. This is the charge 
which is supplied by the source of potential between a and b, and is the charge that will be on the equiva- 
lent capacitor that we can use to replace the combination of C, and C 2 .  Now V, = Q/C, and V2 = Q/C2. 
Then V = V, + V, = Q(l/C, + 1/C2) = Q/C,, . Thus 

(4.11a) 

The same reasoning as used in Problem 4.29 can be used to generalize to any number of series 

l/Ceq = 1/C, + 1/C, (seriescombination) 

capacitors : 

(4.1 1 b) 

Often we have situations in which a number of capacitors are used in a circuit, some in series and 
some in parallel. In many cases we can combine the results of Eqs. (4.1 0) and (4.2 1) to obtain an overall 
equivalent capacitance. 

Problem 4.30. Consider the combination of capacitors shown in Fig. 4-14(a). Here C, = 2.5 pF, C ,  = 
3.5 pF, C, = 5.6 pF and C4 = 1.3 pF. 

(a) What is the equivalent capacitance of C2 and C3 ? 

(b) What is the equivalent capacitance between points a and b?  

(c) If a voltage of 10.5 V were provided between points a and b, what charge would accumulate on the 
equivalent capacitance? 

(d) For case (c), what charge accumulates on capacitor C1? On capacitor C4 ? 

(e) What charge accumulates on capacitor C ,  ? On capacitor C ,  ? 

Solution 

(a) Capacitors C, and C, are in parallel (points c and d play the role of points a and b of Fig. 4-12). They 
can therefore be replaced with an equivalent capacitance of C,, = Cz + C3 = (3.5 + 5.6) pF = 9.1 pF 
[see Fig. 4-14(b)]. 

(b)  If we replace C ,  and C, with an equivalent capacitance C,, = 9.1 pF, we then have three capacitors in 
series. Using Eq. (4.11b), we get the final equivalent capacitance to be 1/Cf,,, = 1/C, + l/Ceq 
+ 1/C, = 1/2.5 + 1/9.1 + 1/1.3 = 1.28, and Cf, ,, = 0.78 pF [see Fig. 4-14(c)]. 

Fig. 4-14 
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(c) The voltage across Cf, ,, equals 10.5 V. Then the charge on the equivalent capacitor is Q = Cf, eqV = 
8.21 x 10-6C. 

(d) In a series circuit, the charge on each capacitor is the same and is equal to the charge on the equivalent 
capacitor. Thus the charge on both C ,  and on C,  is 8.21 x 10-6 C. 

(e) The total charge on the two parallel capacitors C2 and C ,  is the charge on C,, which equals 
8.21 x 10-6 C. This charge is distributed between C ,  and C,. To get the individual charge Q2 or Q3 
we need the voltage across each capacitor. We know that, for a parallel combination, the voltage 
across each capacitor is the same and is equal to the voltage across the equivalent capacitor. We can 
easily calculate the voltage across the equivalent capacitor V’ = Q/C,, = (8.21 x 10‘6 C)/(9.1 pF) 
= 0.90V.ThenQ2 = C2V’ = (3.5 x 10-6F)(0.90) = 3.16 x 10-6CandQ, = C,V’ = (5.6 x 10-6F)(0.90) 
= 5.05 x 10-6 C. Note that Q2 + Q3 = 8.21 x 10-6 C, as required. 

4.8 ENERGY OF CAPACITORS 

As stated previously, whenever we charge a capacitor we must do work to bring more positive 
charge to the plate that was already positively charged, and similarly to the negative plate. This work is 
converted into potential energy of the capacitor, which can be viewed as the energy stored by the 
charges that have been separated. As we will see, we can also take an alternative viewpoint that the 
effect of separating the charges is to produce an electric field in space, and that the accumulated energy 
is stored in these electric fields. 

If a capacitor is charged to a difference of potential V ,  then the work by an outside force that is 
needed to transfer an additional small charge AQ from the negative to the positive plate is 
(AQ)V = Q(AQ)/C. Using arguments similar to those used to calculate the potential energy of the spring 
(Beginning Physics I, Problem 6.Q we can show that the work needed to accumulate a charge of Q on 
the capacitor is W = (Q)Q2/C. Then the energy stored in a capacitor can be written as 

U ,  = ($)Q2/C = ( i )CV2  = ( f ) Q V  (4.12) 

Problem 4.31. Derive the expression for the electrical potential energy stored in a capacitor C with 
charge Q [Eq. (4.12)] 

Solution 

We know that when the capacitor is charged to some value qi the potential is given by 6 = qJC. The 
work necessary to bring the next increment of charge, Aq, across [so that the new plate charge will be 
(qi + Aq) and -(qi  + Aq)], is given by: AK = (Aq.  In Fig. 4-15 we show a plot of potential difference vs. 
charge for our capacitor, as well as the increment from qi to qi + Aq. Clearly, A& is just the area under the 
V vs. q curve between the adjacent dotted vertical lines. The total work done in bringing charges across, 
starting from q = 0 to q = Q is just the triangular area under the V vs. q curve between the origin and 
q = Q. This is just: W = ($)QV = ($)Q’/C = ( i ) C V 2  as indicated in Eq. (4.20). 

V 

t 

Fig. 4-15 
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Problem 4.32. A capacitor with C = 82.3 pF is charged to a voltage of 110 V. 

[CHAP. 4 

How much charge is accumulated on the capacitor? 

How much potential energy is stored in the capacitor? 

If the voltage on the capacitor is to be increased to 150 V, what additional work will have to be 
done? 

If the capacitor is discharged from 150 V to 75 V, how much work can be done by the electric field 
on the moving charges? 

Solution 

(a) The charge on the capacitor is Q = CV = (82.3 pFXll0 V) = 9.05 x 10-3 C. 

(b) The potential energy is given by Eq. (4.12) as U, = ( f ) C V 2  = (ix82.3 x 10-6 FXllO V)2 = 0.50 J. 
(Alternatively, U, = ( f )Q2/C = (iK9.05 x 10- C)2/(82.3 pF) = 0.50 J). 

(c) The final potential energy is (1/2)(82.3 x 10-6)(150)2 = 0.93 J. The additional work is W = AU, = U,, 

(d) When the electric field does positive work the electric potential energy decreases by a like amount. 

- U,i = 0.93 - 0.50 = 0.43 J. 

Thus W = -AU, = U,i - U,, = 0.93 J - (jN82.3 x 10-6)(75)2 J = 0.70 J. 

Problem 4.33. Consider the combination of capacitors used in Problem 4.30, with the voltage of 10.5 
V between points a and b (Fig. 4-14). 

(a) What is the total potential energy stored in the combination? 

(b)  What is the energy stored on each of the capacitors? 

Soh tion 

(a) We showed that the equivalent capacitance of the combination between points a and b is 0.78 pF. 
Then the total energy stored is (i)C,, cq V 2  = (fM0.78 pF)(10.5)2 = 4.3 x 10d5 J. 

(b) For each capacitor we can use either U, = ($ )CV2  or U, = (i)QZ/C. On C ,  and C ,  we know that the 
charge is 8.21 x 10-6 C, so the energies are U,, = (fX8.21 x 10-6)2/2.5 pF = 1.35 x 10-5 J, and 
U,, = (+)(8.21 x 10-6)2/1.3 pF = 2.59 x 10-5 J. For C, and C3 we know that V’ = 0.90 V. Thus 
Up2 = ($)3.5 ~F)(0.90)~ = 1.4 x 10-6 J, and Up3 = (9x56 ~FX0.90)~ = 2.3 x 10-6 J. The total energy 
is then (1.35 + 2.59 + 0.10 + 0.23) x lO-’ J = 4.3 x 10-5 J, as we found in part (a). 

The energy that is stored in a capacitor can be viewed as the energy stored by the charge that has 
been separated. As a result of separating these charges, electric fields are established in space. We can 
therefore, alternatively, view the work done in separating the charges as the work required to produce 
these electric fields. The energy stored would then be viewed as the energy stored in these electric fields. 
We will illustrate this view by using a parallel plate capacitor as an example, but the result we derive 
will be valid for all situations in which electric fields are established. 

Problem 4.34. Consider a parallel plate capacitor whose plates have an area of A and are separated by 
a distance d. As shown previously the capacitance is given as C = c0A/d .  A difference of potential V is 
established between the plates. 

(a) Derive an expression for the energy stored in the capacitor in terms of the dimensions of the 
capacitor and the (constant) electric field within the capacitor. 

(b) Derive an expression for the “energy density” (the energy per unit volume) within the capacitor. 
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Solution 

(a) We know that the electric field within a parallel plate capacitor is E = V / d ,  and that the energy stored 
is U ,  = ($)CV2 = ( $ ) ( E ~  A/d)(Ed)2 = ( & ) ( E ~  E2)(Ad). 

(b) The volume within the capacitor is Ad. In this volume the electric field is given by the formula we used 
(again ignoring slight edge effects). Outside of this volume, the electric field is essentially zero. Thus the 
energy density is Up,, = ( 3 ) ~ ~  E2.  This is a general expression for the energy density (we will modify this 
slightly in the next section) 

U p d  = ( B E 0  E 2  (4.1 3) 

Problem 4.35. A parallel plate capacitor has a capacitance of 2.6 pF. The plates are separated by a 
distance of 0.63 mm. 

(a) If a voltage of 34 V is applied to the plates of the capacitor, calculate the energy stored in the 
capacitor. 

(b) Calculate the electric field within the capacitor. 

(c) Calculate the energy density within the capacitor. 

(4 Use the results of parts (a) and (b) to obtain the area A of the capacitor plates 

(e )  Calculate the energy stored in a cylindrical volume of base area A’ = 0.36 m2 extending from one 
plate to the other within the capacitor. 

Solution 

(a) The energy stored is (3)CV2 = ($)(2.6 pFH34 V)2 = 1.50 x 10-3 J. 

(b) The electric field within the capacitor is E = V/d  = (34 V)/(0.63 x 10-3 m) = 5.40 x 104 V/m. 

(c) The energy density is given by Upd = ( $ ) ( E ~ E ~ )  = (3)(8.85 x 10-12)(5.40 x 104)2 = 1.29 x 10-2 J/m3. 

(d) U ,  = Up,(Ad) -+ 1.5 x 10-3 J = (1.29 x 10-2 J/m2)(0.63 x 10-3 m)A -+ A = 185 m2. 

(e )  The volume of the cylinder is Ad = (0.36 m2)(0.63 x 10-3 m) = 2.27 x lOP4 m3. The energy stored in 
that volume is the energy density times the volume = 1.29 x 10-2(2.27 x 10-4) = 2.93 x 1OP6 J. 

4.9 DIELECTRICS 

So far we have discussed only cases in which charges establish electric fields and potentials in empty 
space or on conductors. If the region includes other, non-conducting materials, even when the materials 
are not charged (neutral), the atoms and molecules within that material may alter the fields that are 
otherwise produced. We have already seen that when neutral conductors are placed near free charges, 
the free charges in the conductors redistribute themselves on the surface and thereby produce fields of 
their own which must be added to the fields of the original charges. Unlike conductors other neutral 
materials do not have free charges and we must consider what mechanism might cause electrical effects 
to arise. 

Normal insulating materials consist of atoms and molecules that are composed of positively charged 
nuclei and negatively charged electrons that are tightly bound together with no loose outer electrons 
that are free to roam. In the presence of an electric field the positive and negative charges in the atoms 
and molecules are pulled in opposite directions. As a result, the atoms and molecules will become 
somewhat “polarized” with the positive and negative charges becoming slightly separated from their 
equilibrium positions. This separation is expected to be approximately proportional to the magnitude of 
the electric field as long as the field is not too large. The (slightly) separated charges will produce their 
own electric field which must be added to the field established by the original charges. In general this 
can lead to many complications, and we will consider only a special case in which the effect can be 
easily understood. 
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Consider a parallel plate capacitor which is filled with some insulating material. We call this 
material a “dielectric” since, as we will show, it will produce its own electric field in a direction opposite 
to the original field. If we place a surface charge distribution of _+ cr on the plates of the capacitor, this 
charge will produce an electric field of a/&, within the capacitor. The field will point from the positive to 
the negative plate. This field will cause a polarization of the material such that each atom will have its 
positive charge move closer to the negative plate (see Fig. 4-16). We will then have tiny “dipoles” 
throughout the material with positive charge to the left and negative charge to the right. In the interior 
of the dielectric the material remains uncharged since the shifting of negative charge slightly to the right 
from one parallel layer will be compensated by negative charge shifting into that layer from the next 
layer to the left. Only at the surfaces, next to the plates, will charge accumulate. On the left surface in 
Fig. 4-16 the electrons that shift to the right are not compensated for and a net positive charge appears; 
on the right surface negative charges moving from the layer just to the left of the surface accumulate on 
the surface, and cannot be compensated for by electrons moving further to the right. Since the bulk of 
the dielectric remains neutral, the net “polarization” charges on the two surfaces of the dielectric are 
equal and opposite. Thus the dielectric develops a surface charge next to each of the plates which is of 
opposite sign to the original charge on the plates. This is equivalent to an additional charge added to 
the plates which produces its own electric field in a direction opposite to the original field. The total 
field within the dielectric will therefore be reduced in this region. If the polarization is proportional to 
the field, then the new total field will be proportional to the field that would be produced in the absence 
of the dielectric material. We can then write that E = E,/K,  where E is the total field in the presence of 
the dielectric, E ,  is the field that would be present without the dielectric and K is the “dielectric 
constant” of the material. These dielectric constants vary from material to material, and some common 
examples are given in Table 4- 1. 

With this electric field the potential difference between the plates is I/ = Ed = E , ~ / K  = O ~ / K E ,  = 
Q ~ / A K E ~ ,  where cr and Q represent the free charge density and free total charge on the capacitor plates. 
Recalling that the capacitance without the dielectric is CO = cOA/d, we have I/ = Q / K C ,  = Q/C,  where 
C is the true capacitance in the presence of the dielectric. Thus C = KC, = K E , A / ~  = &A/d,  where E = 
K E ~  is called the “permittivity” of the material. (correspondingly, E,  is called the permittivity of free 
space.) Since K is always greater than 1, the addition of a dielectric within a capacitor increases the 
capacitance by the factor K. 

The energy stored in the capacitor is still given by U, = ( i ) C V 2 ,  but both C and V are modified for 
a particular free charge Q on the plates. More charge is needed on each plate to produce the same 
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Table 4.1. Dielectric Constants in 
Common Materials 

~~ 

Material Dielectric constant 

Vacuum 1 
Air 1.0005 
Teflon 2.1 

Mica 3-6 
Glass 5-10 

Paper 3.3 

Water 80.4 

potential difference. Correspondingly, the energy density within the dielectric is modified from its value 
in vacuum, and is given by Upd = (&E2. 

Problem 4.36. A parallel plate capacitor has plates with an area of 71 m2. The plates are separated by 
a distance of 0.63 mm and the capacitor is filled with a dielectric of dielectric constant K = 2.6. A 
voltage of 34 V is applied to the plates of the capacitor. Calculate (a) the capacitance of the capacitor, 
(b) the electric field within the capacitor, (c) the energy density within the capacitor, (d) the surface 
charge and charge density on the plates of the capacitor (the free charges) and (e) the surface charge and 
charge density on the dielectric layer near the plates. 

Solution 

(a) The capacitance is C = mO A/d = (2.6x8.85 x 10- 12)(71 m2)/(0.63 x 10-3 m) = 2.6 pF. 

(b) The electric field within the capacitor is E = V/d  = (34 VU(0.63 x 10-3 m) = 5.40 x 104 V/m. 

(c) The energy density is given by Upd = ($)(&E2) = (iX2.6 x 8.85 x 10-'2)(5.40 x 104)2 = 3.35 x 
J/m3. 

(d) The charge on the plates is Q = CV = 2.6 pF(34 V) = 8.84 x 10-5 C. The charge density is a = Q / A  
= 1.25 pC/m2. 

(e) The electric field within the capacitor is produced by two parallel charge distributions, that on the 
plates and that on the surface of the dielectric. Since the two distributions are of the opposite sign, the 
field produced is E = (a - bd)/&o = (Q - &)/A&, . Now from part (b) E = V / d  = 5.4 x 104 V/m and 
(a - a,)/(8.85 x 10-l2) = 5.4 x 104 -, a - go = 4.78 x 10-7 C/m2. Recalling a from part (d) we have 
a d  = 1.25 pc/m2 - 0.48 pc/m2 = 0.77 pC/m2. The total surface charge on the dielectric is then Q d  = 
a d A  = (0.77 x 10-6)(71) = 5-47 x i w 5  c. 

Problem 437. A potential difference of 25 V is maintained across the plates of a parallel plate capa- 
citor. The plates have an area of 43 m2 and are separated by 1.56 mm. 

(a) What is the capacitance of the capacitor if it is filled with air? 

(b) How much energy is stored in this capacitor? 

(c) What is the energy stored in the capacitor if it is filled with a dielectric of dielectric constant 
IC = 1.9 and the potential is held fixed? 

(d) How much work is done when the dielectric is inserted between the plates? 

(e) How much charge is on the plates with and without the dielectric? 



128 ELECTRIC POTENTIAL AND CAPACITANCE [CHAP. 4 

Solution 

(a) The capacitance is C = q ,A /d  = (8.85 x 10-l2)(43 m2)/(1.56 x 10-3 m) = 0.244 pF. 

(6) The energy stored = ( i ) C V 2  = (ix0.244 pF)(25 V)2 = 7.62 x 10-5 J. 

(c) The energy stored is changed because the capacitance is increased to xCO = 1.9(0.244 pF) = 0.464 pF. 
Then the energy stored is 1.44 x 10-4 J. 

(d) The work done is the change in the energy stored, which equals (1.44 - 0.76) x 10-4 J = 6.8 x 1OVs J. 
This work is done in the process of increasing the charge on the plates, as the dielectric is inserted, to 
keep the voltage across the capacitor fixed. 

(e) The charge in each case equals Q = C V .  For air, Q = (0.244 pF)(25 V) = 6.1 x 10-6 C. For the dielec- 
tric, Q = (0.464 pFK25 V) = 1.16 x 10-5 C. 

Problems for Review and Mind Stretching 

Problem 4.38. A square, of side 0.38 m, has a charge Q1 = 7.6 x 10-8 C at each of three corners, and a 
charge Q2 = -5.3 x 10-8 C at the fourth corner, as in Fig. 4-17. 

(a) What electric field is produced at the center of the square? 

(b) What potential is produced at the center of the square? 

(c) How much work must be done by an outside force to just remove Q2 to a very large distance 
(+ CO)? 

Solution 

(a) The magnitude of the field produced by each charge is IEI = kQ/r2. The directions of E from the Q1 at 
the two opposite corners are opposite and therefore cancel out. The direction of E, is toward q , ,  and 
has a magnitude of 1 E, 1 = (9.0 x 109)(7.6 x 10-8 C)/(0.38/,/2 m)' = 9.47 x 103 V/m. The direction of 
E, is also toward y2 since Q2 is negative, and has a magnitude of I E2J = (9.0 x 109)(5.3 x 
10-' C)/(0.38/,/2 m), = 6.61 x 103 V/m. The sum of these two fields is toward Q2, and equals 
(9.47 + 6.61) x 103 V/m = 1.61 x 104 V/m. This is the total field at the center of the square. 

(b) The potential at the center is the scalar sum of the potential due to each charge. It therefore equals 
V = 31/, + V, = k(3Q1 + Q2)/r  = (9.0 x 109)(3 x 7.6 - 5.3) x 10-8 C/(0.38/,/2 m) = 5.86 x 103 V. 

(c) To calculate the work needed to remove Q2 far away, we must calculate the change in potential energy 
between the case of Q2 at infinity and at its present position. The change that occurs is that the 
potential energy between Q, and the three other charges becomes zero at my while the potential energy 
between the fixed three charges does not change. When Q2 is at its present position its potential energy 
equals the sum of kQ,Q,/r,, for each of the three charges. Two of the charges are at a distance of 0.38 
m from Q,, and the third charge is at a distance of 0.38,/2 m from Q,. Thus UPi = (9.0 x 109)(7.6 
x 10-' C)(-5.3 x 10-8 C)(2/0.38 m + 1/0.38,/2 m) = -2.58 x 10-4 J. The change in potential 
energy, which is the work that is needed, is 2.58 x 10F4 J. 

QI Q2 

91 QI 

Fig. 4-17 
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Problem 4.39. A dipole consists of a positive charge q at x = d/2 and a negative charge -q  at 
x = -d/2 (as in Fig. 4-18). The dipole “moment”, p, is defined as p = qd, where d is the distance 
between the charges. 

(a) What is the potential produced by this dipole at a point on the x axis far from the dipole, i.e. at 
x p d? 

4 65 V a 

(b) What is the potential produced by this dipole at a point on the y axis? 

(c) What is the potential produced by this dipole at a point (x ,y)  far from the dipole, i.e. 
r = (x2 + y2)lI2 >> d? 

Solution 

(a) The potential is the sum of the potential from the two charges. Thus V = kq/(x - d / 2 )  - kq/(x + d/2).  
Combining by using the common denominator gives, V = kq[(x  + 4 2 )  - ( x  - d / 2 ) ] / [ ( x  + d/2)(x - d / 2 ) ]  
= kqd/(x2 - d2/4)  x k(qd)/x2 = kp/x2, since x 9 d.  In the numerator we were unable to neglect d 
compared to x ,  because the x canceled upon subtraction and we are left with d as a multiplicative 
factor, but in the denominator the x 2  term clearly dominates. 

(b) In this case the potential is V = k q / [ y 2  + ( ~ f / 2 ) ~ ] ~ / ~  - kq / [y2  + ( - d / 2 ) 2 ] ’ / 2  = 0. 

(c)  The distance from the charges to the point (x ,y )  is [(x - d/2)2  + y 2 ] 1 / 2  and [(x + d/2)2  + y2I1I2 for the 
positive and negative charges, respectively. For r & d, each of these is approximately equal to 
r = (x2  + y2)’l2, and we can use this approximation whenever we are not subtracting the two distances 
from each other. We can write I/ = k q [ l / [ ( x  - d/2)2 + y2]1/2 - l/[(x + d/2)2 + Combining 
using a common denominator we get V = [ k 4 / r 2 ] { [ ( x  + d/2)2 + y 2 ] 1 / 2  - [(x - d/2)2 + y 2 ] 1 / 2 } ,  where 
we have used the approximation that [ (x  f d/2)2  + y 2 ] 1 / 2  GZ ( x 2  + y2) l l2  = r in the denominator. Now, 
[ ( x  + d/2)2 + y2-y2 = [x2 + d x  + d2/4 + y 2 ] l / 2  Similarly, 
[ ( x  - d/2)2 + y 2 ] ’ / 2  = [ x 2  - dx  + d2/4 + ~ ’ 1 ’ ’ ~  x [ r 2  - dx]’l2 GZ $ 1  - dx/2r2).  V x (kq/r2) 
[ ( r  + dx/2r)  - (r - dx/2r)] = kqdx/r3 = k p  cos8/r2. This result gives us the correct answer for part 
(a) when 8 = 0 and for part (b) when 8 = 90”. 

x [ r 2  + d x p 2  x r(l + dx/2r2).  
Then 

Problem 4.40. A charge of Q1 = 4.35 x 10-8 C is at the center of a conducting spherical shell of inner 
radius r1 = 0.93 m and outer radius r2 = 1.07 m. The shell itself has a charge of Q’ = -7.55 x 10-* C. 

(a) What charge Qr is on the inner surface of the sphere and what charge Qz is on the outer surface? 

(b) What is the potential at r = 1.55 m? 

(c) What is the potential at r = 1.00 m? 

(d) What is the potential at r = 0.67 m? 

Y 

t 
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Solution 

(a) The charge on the inner surface must equal Ql = -Q = -4.35 x 10-8 C in order that the field is zero 
within the conducting sphere. Then the charge on the outer surface must equal Qz = -3.20 x 10-8 C 
so that the total charge on the shell is Q’ = -7.55 x 10-8 C. 

(b) The potential at any point is the sum of the potential produced by the three charges: Q, Q1 and Q,. 
The potential from Q is kQ/r, and the potential from the charges on the surfaces is given by Eq. (4.5): 
(a) V = (1/47t&O)Q/r for r > R and (b) V = (1/4Z&O)Q/R for r < R. At r = 1.55 m we are outside of all the 
charge distributions, and the total potential is V = k(Q + Q1 + Q2)/r = (9.0 x 109X4.35 - 4.35 - 3.20) 

(c) At r = 1.00 m, we are outside of Q and Q1, but inside Q,.  Then V = k(Q + Ql)/r + kQ2/r2 = 0 + (9.0 

(d) At r = 0.67 m, we are inside Q1 and Q,, and V = kQ/r + k(Ql/rl + Q2/r2) = (9.0 x lO’H4.35 x 
10-8 C)/0.67 m + (9.0 x 109)(-4.35 x 10-8 C/0.93 m - 3.20 x 10-8 C/1.07 m) = - 106 V. 

x 10-’ C/1.55 = -186 V. 

x 109K-3.20 x 10-8 C)/1.07 = -269 V. 

Problem 4.41. The capacitance of two concentric spherical shells was calculated in Problem 4.26 as 
C = 4m0/(l/r1 - 1/r2). Show that as rl + r 2 ,  the capacitance approaches go A/d, where A is the surface 
area of the sphere and d = r2 - r l .  

Solution 

The capacitance can be written as C = 4nc0 r l  r2/(r2 - rl). As rl  -+ r 2 ,  C + 4x6, r2 /d  = c0 A/d.  This is 
just the formula for a parallel plate capacitor of area A separated by d. Thus the two spherical surfaces 
behave like two parallel surfaces separated by d. 

Problem 4.42. A coaxial cable consists of an inner conducting cylinder of radius rl and a coaxial 
conducting cylindrical shell of inner radius r2. Calculate the capacitance between the inner and outer 
cylinders for one meter of this cable. 

Solution 

We assume that the inner cylinder has a charge of + Q  and the outer cylinder has a charge of -Q. To 
calculate the potential difference between the cylinders we make use of the formulas given for charged 
cylinders in Eq. (4.7) for a long cylinder with surface charge at R:  (a) I/ = -(A/2ne0) In (r/R‘) for r > R ;  (6)  
V = - ( A / ~ . / ~ K E ~ )  In (RIR’) for r < R. Here 1 = Q/L, and R‘ is an arbitrary radius, usually taken as R. The 
potential at rz will then equal V = Vl + V, = 0, since we get opposite contributions from the two surface 
charges using Eq. (4.74 for both. At r l ,  we must use Eq. (4.76) for V,, since we are now at r < r , .  Then 
V = - ( r l / 2 7 t ~ ~ )  In (rl/R’) - ( - I / 2 m O )  In (r2/R’) = (A/2mO) In (r2/rl) = (Q/2ze0L) In (r2/r1). The capacitance 
per unit length C/L = Q/VL = 27te0/ln (r2/r1). 

Problem 22.43. Several capacitors are connected as in Fig. 4-19(a). The capacitors have capacitance of: 
C1 = c6 = 2.5 pF, C2 = C, = C, = 1.5 pF, C ,  = 3.5 pF. The charge on C3 is Q3 = 5.3 x 10-6 C. 

(a) What is the equivalent capacitance between points a andf? 

(b) What is the difference of potential between points c and d? 

(c) What is the difference of potential between points b and e? 

(d) What is the difference of potential between points a andf? 

(e) What is the charge on each capacitor? 

Solution 

(a) We first calculate the equivalent capacitance of the three capacitors that are in series, C ,  , C, and C4. 
This is given by l/Ceq = 1/C, + l /C3 + l/C4 = 3(1/1.5 pF), or C,, = 0.50 pF. The circuit can then be 
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0.50 pF 

‘6 

+-I 
f -IT 

cbe 

redrawn as in Fig. 4-19(b). We then combine this capacitor and the parallel capacitor C ,  with an 
equivalent capacitor cb, of cb, = (3.5 + 0.5) pF, as in Fig. 4-19(c). Finally, we combine the three series 
capacitors in this figure to get the equivalent capacitance between a andS, C,, = 1/C, + l/cbe + 1/c6, 
giving Cof = 0.952 pF. 

(b) The potential difference between the points c and d is the potential across C, = Q3/C3 = (5.3 x 
10e6 C)/(1.5 x 10-6 F) = 3.53 V. 

(c) The potential difference between the points b and e is the potential across each of the parallel capa- 
citors Fig. 4-19(b). The charge on the 0.50 pF capacitor is the same as on each of the three series 
capacitors, C,, C, and C,, which is 5.3 x 10-6 C. Thus Vbe = (5.3 x 10-6 C)/(0.50 x 10-6 F) = 
10.6 V. 

(d) The potential difference V,, will equal Q/C,, where Q is the common charge on each of the three series 
capacitors in Fig. 4-19(c). The charge on C,, can be calculated as Cbe&, = (4.0 x 10M6 FX10.6 V) 
= 4.24 x l O - ,  C. Then V,, = (4.24 x 10-’ C)/(0.952 x 10-6 F) = 44.5 V. 

In part (d) we already used the fact that Q1 = Q6 = Qbe = 4.24 x 10-’ c [Fig. 4-19(c)]. From Fig. 
4-19(a) we see that Qz = Q 3  = Q4 = 5.3 x 10-6 C. From Fig. 4-19(b) we see that Q ,  = C, vb, = (3.5 
x 10-6 FM10.6 V) = 3.71 x l O - ’  C. 

(e) 

Problem 4.44. In a certain region of space the equipotential surfaces are the surfaces of concentric 
spheres. The potential is given as V = - Vor/ro, where Vo = 38 V, is the potential at ro = 0.35 m and r is 
the distance from the center of the concentric spheres. 

(a) What is the direction of the electric field at a distance r from the center of the spheres? 

(b) What is the magnitude of the field at this value of r? 

(c) If a particle with a charge of 6.1 x lO-’ C and mass 9.3 x 10-l’ kg has a speed of 3.8 x 10’ m/s at 
t = 0.35 m, what is the speed of this particle when it reaches r = 2.8 m? 

Solution 

(a) The electric field lines are always perpendicular to the equipotential surface and point from high to low 
potential. The direction that is perpendicular to the surface of concentric spheres is the radial direction. 
Therefore the field points along a radius. Since the potential decreases as r increases (it becomes more 
negative), the field points away from the center (outward) along the radius. 

(b) The magnitude of the electric field is given by I E I = I AV/Ad I when Ad is along the direction of the 
field lines. To get I E l  we calculate V at T and at (r + At-) and subtract to get AV. This gives us 
I A V  I = (Vo/ro)[(r + Ar) - r] = V, Ar/ro.  Thus I E I = AV/Ar = Vo/ro, and the magnitude of E is con- 
stant throughout the region. 
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(c) We use conservation of energy in this part. This requires that the sum of the potential and kinetic 
energy be the same at both points. The potential energy is U = qV and the kinetic energy is K = 

($)mu’. Initially K = (3)(9.3 x 10-l5 kg)(3.8 x 105 m/s)’ = 6.71 x 10-4 J, and U, = q( - V,) = (6.1 
x 10-7C)(-38 V) = -2.32 x 10F5 J. At r = 2.8 m, U, = 4 -  Vor/ro) = (6.1 x 10-? C)(-38 x 2.8/0.35) 
= - 1.85 x 10-4 J. Then adding kinetic and potential energies, 6.71 x lOP4 - 2.32 x 10-5 
= - 1.85 x lOP4 J + K giving K = 8.33 x 10-4 J. Then uf = 4.23 x 10’ m/s. 

Note. Newton’s 2nd law could be easily used to get this result only if the initial velocity were 
along a radius. Our result is quite general. 

Problem 4.45. A charge Q produces an electric field of magnitude I E 1 = kQ/r2 .  How much energy is 
stored by this electric field in a spherical shell at radius r and thickness Ar, where Ar < r? 

Soh tion 

Within this shell the electric field can be considered constant since r hardly varies. The energy density 
is given by U p d  = ( + ) E ,  E 2  = (~)~,[(1/4m,)Q/r~]’. For a thin shell the volume is equal to the surface area of 
the shell times the thickness of the shell, or volume = 4nr2Ar.  The energy stored equals u p d  x volume = 

QZAr/8m,  r2 .  

Problem 4.46. A parallel plate capacitor C is given a charge Q with air between the plates. The capa- 
citor is then isolated so that no charge can be added or removed from the plates. Then a dielectric, of 
dielectric constant IC, is inserted between the plates, filling 3 of the volume (see Fig. 4-20). 

(a )  What is the potential difference between the plates when there is air between the plates? 

(b) What is the potential difference between the plates when the dielectric material is between the 
plates? 

(c) What is the capacitance of the plates when the dielectric material is between the plates? 

Soh tion 

(a) The potential difference is V = Q/C. 

(b) The electric field is now produced by the charges on the plates and also by the polarization surface 
charges on the dielectric material. The charge on the dielectric material does not produce any field in 
the region outside of the dielectric since the two surfaces are oppositely charged and they add to zero 
outside the material. Within the material (as discussed in the text for the case of dielectric filling the 
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entire space) the electric field will be reduced to E,/rc, where E, = Q/tOA, the field for the dielectric free 
capacitor. If we now move along a line from the positive plate to the negative plate, the potential 
difference from a to b is E0(2d/3), and the potential difference from b to c is (E0/lc)(d/3). Then V = 

(c) The new capacitance is C’ = Q/V = C/(2/3 + 1/3rc). 

E,d(2/3 + 1 / 3 ~ )  = (Qd/tOA)(2/3 + 1 / 3 ~ )  = Q(2/3 + 1/3~)/C. 

Supplementary Problems 

Problem 4.47. A charge of 6.8 x 10-7 C is at a distance of 0.96 m from a second charge. The potential energy of 
the combination is -3.8 x 10-3 J. What is the charge on the other charge? 

A ~ ~ .  -6.0 x 10-7 c 

Problem 4.48. Three charges are at the corners of an equilateral triangle of side 2.5 cm. The charges have charge 
of 5.3 x 10-8 C, -6.9 x 10-* C and -9.9 x 108 C. What is the total potential energy of the combination? 

~ n s .  - 7.5 x 10-4 J 

Problem 4.49. Two charges of 4 = 5.6 x 10-7 C are located on the x axis at x = k0.76 m. 

(a) What is the potential at x = 1.52 m on the x axis? 

(b) What is the potential at x = - 1.52 m an the x axis? 

(c )  What is the potential at y = 1.52 m on the y axis? 

(d) What is the potential at the origin, x = y = O? 
~ n ~ .  (a) 8.84 x 103 v; (b) 8.84 x 103 v; (cl 5.93 x 103 v; ( d )  1.33 x 104 v 

Problem 4.50. A charge of 5.3 x 10-7 C is located at the origin and a second charge of -4.5 x 10-7 C is on the x 
axis at x = 2.1 m. At what two points on the x axis is the potential equal to 500 V?  (Refer to Problem 4.5 for a 
similar problem.) 

Ans. x = 1.073 m and x = -4.15 m 

Problem 4.51. A charge of 4.5 x 10-7 C is at x = -0.19 m and a charge of -5.3 x 10-7 C is at x = + 0.19 m. 
At what point or points on the y axis is the potential equal to -500 V?  

Ans. y = f 1.43 m 

Problem 452. A ring of uniformly distributed charge has a radius of 1.81 m and contains a total charge of 
6.5 x 10-7 c .  

(a) At what distance from the plane of the ring is the potential equal to 1100 V along the axis of the ring? 

(b) How much work must be done to move a charge of 3.8 x 10-7 C from this point to the center of the ring? 

Am. (a) 5.0 m; (6) 8.10 x 10-4 J 
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Problem 4.53. A large plane sheet has a surface charge density of 3.7 x 10-' C/m2. Point a is at a distance of 2.1 
cm to the left of the sheet, point b is 1.1 cm to the left, point c is 1.1 cm to the right and point d is 2.1 cm to the 
right of the sheet. 

(a) What is the potential difference between points a and b, V,  - Vb ? 

(b) What is the potential difference between points b and c, Vb - V,  ? 

(c) What is the potential difference between points c and d,  V,  - V, ? 

Ans. (a) -20.9 V; (b) 0; (c) 20.9 V 

Problem 434. Two large parallel plane sheets are uniformly charged and separated by 5.6 cm. The sheet on the 
left has a surface charge density of 3.7 x 10-' C/m2 and the one on the right has a surface charge density of 
- 1.3 x 10-' C/m2. Point a is between the sheets at a distance of 1.2 cm from the left sheet, point b is between the 
sheets at a distance of 1.2 cm from the right sheet and point c is to the right of both sheets at a distance of 1.2 cm 
from the right sheet. 

(a) What is the potential difference between points a and b, V, - V,  ? 

(b) What is the potential difference between points c and 6, V,  - V, ? 

Ans. (a)  90.6 V;  (b) 50.2 V 

Problem 4.55. A charge of 6.2 x 10-' C is at the center of a charged conducting spherical shell of inner radius 
0.86 m and outer radius 0.91 m. At a distance of 1.00 m from the charge, the potential is 4.92 x 103 V. 

(a) What charge is on the sphere? 
(b) What is the potential on the surface of the sphere? 

(c) What is the potential at a point within the sphere at a distance of 0.50 m from the central charge? 

Ans. (a)  -7.33 x 10-' C; (b) 5.41 x 103 V; (c) 1.01 x 104 V 

Problem 456. A charge Q1 is at the center of a charged conducting spherical shell of inner radius 0.54 m and 
outer radius 0.77 m that has a charge Q2. At a point 0.40 m from the central charge, the potential is 985 V and on 
the sphere the potential is 880 V. 

(a) What is the charge Q1? 
(b) What is the charge Q2 ? 

Ans. (a) 1.80 x 10-' C; (b) 5.72 x 10-' C 

Problem 4.57. A long straight wire has a uniform charge of 6.3 x 10-' C/m. What is the difference of potential 
between a point a which is 0.62 m to the left of the wire and a point b that is 0.13 m to the right of the wire, i.e. 
what is V,  - V, ? 

Ans. -177 V 

Problem 4.58. Two long wires are parallel to each other, separated by a distance of 0.43 m, and have uniform 
charges of 1.9 x 10-' C/m and -7.3 x 10-' C/m, respectively. Point a is midway between the wires and point b is 
0.20 m from the negatively charged wire (and 0.63 m from the positively charged wire). What is the difference of 
potential V,  - V,? 

Ans. 46.3 V 
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Problem 4.59. Two long wires are each uniformly charged, with one along the x axis and the other along the y 
axis. The one along the x axis has a charge of 1.9 x 10-9 C/m, and the one along the y axis has a charge of 
2.5 x 10-9 C/m. Point a is at (0.15, 0.15), point b is at (0.45, 0.15), point c is at (0.15, 0.45) and point d is at (0.45, 
0.45). 

(a) What is the potential difference V, - V,  ? 

(b) What is the potential difference V,  - V,  ? 

(c) What is the potential difference V, - V,  ? 

Ans. (a) 49.4 V; (b) 37.6 V; (c) 87.0 V 

Problem 4.60. A long straight line carries a uniform charge of 6.6 x 10M9 C/m. A long conducting cylindrical 
shell, carrying a charge of -4.8 x 10-9 C/m is coaxial with the line and has an inner radius of 0.25 m and an outer 
radius of 0.27 m. Use R = 0.25 m for calculating the potential. 

(a) What is the linear charge density on the inner and on the outer surface of the cylinder? 

(b) What is the potential at r = 0.36 m? 

(c) What is the potential at r = 0.27 m, the surface of the cylinder? 

(d) What is the potential at r = 0.15 m? 

Ans. (a) - 6.6 x 10-9 C/m and 1.8 x 10-9 C/m; (b) - 11.8 V; (c) - 2.5 V; (d) 58.2 V 

Problem 4.61. A long wire has a uniform positive charge distribution along its length. 

(a) What are the equipotential surfaces for this wire? 

(b) In which direction does the electric field point? 

Ans. (a) cylindrical surfaces coaxial with the wire; (b) radially outward 

Problem 4.62. A long straight wire carries a charge of 4.9 x 10-' C/m. A short segment of insulating wire, of 
length 0.077 m, is parallel to the long wire, and carries a total charge of 6.8 x 10-6 C. How much work is needed to 
move this short wire from a distance of 5.3 m to 3.1 m from the long wire? 

Ans. 3.22 x lO-'J 

Problem 4.63. A dipole is at the origin, oriented along the x axis. The dipole moment is 6.7 x 10d9 C * m, with 
the positive charge on the positive x side. Two charges of f 5.0 x 10M6 C are separated by a distance of 0.39 m 
and placed along the x axis with the positive charge nearer the dipole at a distance of 2.10 m. Refer to Problem 4.39 
for the potentials. 

(a) What is the potential energy of the charges in this position? 

(b) If the charges are rotated by 90" and shifted so that the charges are now both at x = 2.10 m and y = k0.195 
m, what is the potential at this position? 

(c) How much work by an outside force was done to turn the charges? 

Ans. (a) 1.97 x 10-5 J ;  (b) 0; (c) - 1.97 x 10-6 J 

Problem 4.64. A certain charge distribution gives a potential of V = -A/r4, where A is a positive constant and r 
is the distance from the origin. 

(a) What are the equipotential surfaces for this potential? 

(b) In which direction does the electric field point? 

(c) What is the magnitude of the electric field? (Hint: See Problem 4.13) 

Ans. (a) spherical surfaces centered on the origin; (b) radially in; (c) 4/rs 
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Problem 4.65. A proton has a speed of 6.0 x 106 m/s. The mass of a proton is 1.67 x 10-24 kg, and the charge is 
the same as on an electron (except that it is positive). 

(a) What is the kinetic energy of the proton in Joules and in eV? 

(6) If all the kinetic energy was gained by falling through a difference of potential, what difference in potential is 
required? 

Ans. (a) 3.01 x l O - I 4  J = 1.88 x 10’ eV; (b) 188 keV 

Problem 4.66. An electron is moving with constant speed in a circle around a proton. The centripetal force is 
supplied by the electrical force between the proton and the electron. The radius of the orbit is r = 0.53 x 10-lo 

(a) What is the potential energy of the system in eV? 

(b) Use the equation relating the (mass) x (centripetal acceleration) to the electrical force to deduce the kinetic 
energy of the electron in eV directly from the result of (a). 

(c) What is the total energy of the system in eV? 

(d) How much energy is needed to ionize the system, i.e. to remove the electron to a position at rest at infinity 
(total energy equal to zero)? 

Ans. (a) - 27.2 eV; (b) 13.6 eV; (c) - 13.6 eV; (d) 13.6 eV 

Problem 4.67. A particle, of mass 1.8 x 10-” kg and charge 1.6 x 10-l9 C is fixed to the origin. Another charge, 
of mass 9.1 x 10-3’ kg and charge - 1.6 x 10-19 C is initially at a distance of 9.3 x 10-l’ m from the origin and 
moving directly away from the origin with a speed of 5.14 x 10’ m/s. At what distance from the origin does this 
second particle stop and reverse its direction? 

Ans. 1.8 x l O P 9  m 

Problem 4.68. A capacitor is built out of two closely spaced concentric spherical shells separated by a distance of 
0.83 mm. The capacitance is 25 nF. What is the radius of the shells? (Refer to Problem 4.41.) 

Ans. 0.43 m 

Problem 4.69. A certain capacitor has an electric field of 2.85 x 10’ V/m when 120 V are across the capacitor. 

(a) What is the distance between the plates? 

(b) If the area of the plates is 33 m2, what is the capacitance of the capacitor? 

(c) What is the energy in the capacitor when the voltage across the capacitor is 120 V? 

(d) What is the electrical energy density in the capacitor at this voltage? 

Ans. (a) 0.42 mm; (6) 0.69 pF; (c) 5.0 x 10-3 J ;  (d) 0.359 J/m3 

Problem 4.70. Four capacitors are connected in series and a voltage of 12 V is connected across the circuit. The 
capacitances are 1.3 pF, 2.5 pF, 6.8 pF and 0.92 pF. 

(a) What is the equivalent capacitance of the circuit? 

(6) What is the voltage across each capacitor? 

(c) What is the total energy stored in the system? 

Ans. (a) 0.416 pF; (b) 3.84 V, 2.00 V, 0.73 V, 5.42 V; (c) 3.0 x lO-’ J 

Problem 4.71. Four capacitors are connected in parallel and a voltage of 12 V is connected across the circuit. The 
capacitances are 1.3 pF, 2.5 pF, 6.8 pF and 0.92 pF. 

(a) What is the equivalent capacitance of the circuit? 

(b) What is the charge stored on each capacitor? 

(c) What is the total energy stored in the system? 

Ans. (a)  11.5 pF; (b) 15.6 pC, 30 pC, 82 pC, 11 pC; (c) 8.28 x 10-4 J 
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Problem 4.72. 
The capacitances are 1.3 pF, 2.5 pF, 6.8 pF and 0.92 pF. 

(a) What is the equivalent capacitance of the circuit? 

(b) What is the charge stored on each capacitor? 

(c) What is the total energy stored in the system? 

Four capacitors are connected as in Fig. 4-21 and a voltage of 12 V is connected across the circuit. 

Ans. (a) 2.55 pF; (b) 10.5 pC, 20.1 pC, 26.9 pC, 3.6 pC; (c) 1.84 x 10-4 J 

Problem 4.73. A capacitor filled with air has a capacitance of 25 pF. What capacitance would the capacitor have 
if it were filled with paper? 

Ans. 82.5 p F  

Problem 4.74. An air filled capacitor has a capacitance of 25 pF. If 1/4 of its volume were filled with paper, what 
capacitance would it have? (See Problem 4.46.) 

Ans. 30.3 pF 

Problem 4.75. An air filled capacitor has a capacitance of 25 pF, and a constant voltage of 18 V is across the 
capacitor. 

(a) How much charge is stored on this capacitor? 

(b) If the capacitor were filled with paper, and the voltage remained the same, how much charge would be stored 
on the capacitor? 

(c) How much energy is stored in the system in each case? 

Ans. ( U )  4.5 x 10d4 C;  (b) 1.49 x 10-3 C;  (c) 4.05 x lO-’  J, 1.34 x 10-’ J 

Problem 4.76. A capacitor has an area of 91 m2 and the plates are separated by 0.86 mm. We want the capacitor 
to have a capacitance of 25 pF. What must be the dielectric constant of the material filling the capacitor to give this 
capacitance ? 

Ans. 26.7 

1.3 pF 

0.92 pF 

Fig. 4-21 


