Chapter 4

Electric Potential and Capacitance

4.1 POTENTIAL ENERGY AND POTENTIAL

In the previous chapter we learned about the force due to the electrical interaction and the electric
field concept used to describe that force. The interaction is very similar to the interaction of masses with
each other described by the gravitational interaction. Forces in general, as we learned in Chap. 6 of
Beginning Physics I, Sec. 6.3, are able to do work, and the work that they do can be transformed into
kinetic energy. For forces that are “conservative” the work done can be expressed in terms of a change
in potential energy associated with those forces. In the case of the gravitational force due to the Earth,
for example, the potential energy is given by U, = mgh near the surface of the earth (where the force of
gravity is a constant) and, more generally, U, = — GmM/r for greater distances r from the center of the
earth. When some forces are conservative and others are not, the work—energy theorem can be
expressed as total work (non-conservative) equals the total change in kinetic energy plus the total
change in potential energy (due to all conservative forces). We now consider the electrical force. Is this
force also conservative, and, if so, what is its potential energy?

Problem 4.1. By analogy to the force of gravitation (a) show that the electric force is conservative and
(b) derive the formula for the potential energy of two charges, g and Q, separated by a distance r.

Solution

(a) The force of gravity is given in magnitude by F, = GmM/r?, and is a force of attraction along the line
joining the masses. The electrical force between charges ¢ and Q is given in magnitude by F, = kqQ/r?,
and is a force along the line joining the charges. This force is attractive for charges of opposite sign and
negative for charges of the same sign. When this force is attractive it is identical to the force of gravity
if one interchanges charges for masses and the constant k for G. Therefore, it is clearly also conserva-
tive just as the force of gravity is conservative. If the force is between charges of the same sign, so that
the force is repulsive, the work done by the force is the same as would be done by the same charges if
they were of opposite sign, except that the work is the negative of that done by the attractive force.
Since the attractive force is conservative, the work however depends only on the starting and ending
points and not on what happened in between. This will also be true of the repulsive force which is
therefore also conservative. Therefore the electric force is conservative, and work can be written in the
form of a change in potential energy.

(b) By analogy with the force of gravity the potential energy can be written down immediately by substi-
tuting k for G and —qQ for mM. We need the minus sign because for two positive charges the work is
of the opposite sign to that two positive masses. The potential energy of two charges g and Q separated
by a distance r is then given by:

U, = kqQ/r = (1/4n£)qQ/r (4.1

A quick examination of signs shows that this equation works for arbitrary sign charges.

This formula can be used to calculate the potential energy for arbitrary sets of charges. This follows
because energy is a scalar, and the total potential energy is determined by adding together, algebrai-
cally, the potential energy between pairs of charges.

We note that in Eq. (4.1) the zero of potential energy has been chosen when r — co. If the charges
are of the same sign then the potential energy increases as the charges approach each other. This follows
because an external force must do positive work in forcing the charges closer together against their
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mutual repulsion. When such charges are left to themselves they try to move to regions of lower poten-
tial energy. This corresponds to the fact that the repulsive electrical force now does positive work by
moving the charges further apart, thus causing a decrease in their potential energy. If the charges are of
opposite sign then the potential energy becomes more negative (decreases) as the charges approach each
other, and less negative (increases) as they are forced further apart. If left to themselves, these charges
would move closer, seeking regions of lower potential energy.

If we fix the position of one charge, , and allow the second charge, g, to move, then the potential
energy will vary with the position of the second particle. One could say that the system changes its
potential energy and that this change in potential energy depends on the change in the position of the
second charge. We could associate a specific potential energy with each point in space in a manner
similar to associating an electric field to each point in space. From Eq. (4.1) we note that this potential
energy is proportional to the moving charge. The potential energy per unit charge, U,/q, then depends
only on the position of the moving charge, as well as on the magnitude and sign of the stationary
charge. Similarly, if one had many stationary charges, the potential energy of the entire system changes
as the moving charge goes from one point to another, and is proportional to this moving charge. Again,
the potential energy per charge depends only on the position of the moving charge and on the charac-
teristics of the stationary charges. We can view this as a situation in which the stationary charges
provide each point in space with a scalar value, called the potential, ¥, such that the potential energy of
the system will equal qV if the moving charge is at that point in space. (We ignore here the potential
energy between the fixed charges, which remains unchanged as the charge ¢ moves.) The unit for poten-
tial V¥ is the volt (V), which is the same as J/C. As the charge moves there will be a change in potential
energy, AU, which will equal g times the change in the potential at each point. In summary:

U,=gqV, (4.2a)
and AU, = gAV (4.2b)

The quantity AV is the “potential difference™ between the two points, and depends on the stationary
charges Q, that produce this potential at all points in space. It is independent of the characteristics of
the moving charge, g, whose potential energy changes. The potential is related to the potential energy in
the same manner that the electric field is related to the electric force. Whenever an electric field is
produced by some set of charges, Q;, it acts as the source of the force distribution in space; it also can
be thought of as the source of the potential distribution in space. If one places another charge, g, at
some position in space, the electric field will exert a force of F = gE on the charge, and the system will
have a potential energy of U, = gV, where E and V are the field and the potential at that point. The
work done by the force F =gE in moving the charge q from one location to another is just
—AU, = —gAV, from the usual relationship between work and potential energy. Clearly E and AV are
related in exactly the same way that F and AU, are related. This is discussed in greater detail in Sect.
4.3, One can change E and V by changing the source charges, Q; and their position.

Problem 4.2. Two charges, @, = 3.3 x 107 Cand @, = —5.1 x 107° C are located at the origin and
at x = 0.36 cm, respectively. A third charge, g = 9.3 x 1077 C, is moved from far away (r = o) to a
point on the y axis, y = 0.48 cm.

(@) What is the potential energy between ¢ and Q, at this point?

(b) What is the potential energy between g and Q, at this point?

(c) What is the change in potential energy of the system as one moves g from far away to this point?
(d) What is the potential difference between the point at oo and this point?

Solution

(a) The potential energy between any two charges is kqQ/r. Thus the potential energy between g and Q, 1s
U, =1(9.0 x 10°9.3 x 1077 C)3.3 x 106 C)/0.48 x 1072 m = 5.75 J.
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{(b) The distance between g and Q, is (0.36% + 0.48?)!/2 cm = 0.60 cm. Thus the potential energy between g
and @, is U, ={9.0 x 10°%9.3 x 1077 CX—6.3 x 107 ° C)/0.60 x 1072 m = —8.79 J.

(c) When q is far away the potential energy between g and each of the charges Q is zero. There is potential
energy of the system between Q, and Q,, but that potential energy does not change as one moves g
from point to point. As one moves the charge g to the final point the potential energy changes because
of the interaction between g and the Q. The final potential energy is U, =5.75J — 879 J = —3.04 J.
Therefore AU, = —3.04 — 0= -3.04]J.

(d) Since AV = AU J/q, the potential difference is AV = — 3.26 x 10° V.

42 POTENTIAL OF CHARGE DISTRIBUTIONS

The previous problem illustrated how to calculate the potential energy in the case of two fixed point
charges and a moving charge, and then how to use that potential energy to obtain the potential. We can
clearly use this procedure to calculate the potential produced by any number of point charges at all
points in space. We can thus calculate the potential produced by a collection of particles or by a
distribution of charge.

Problem 4.3. Calculate the potential produced by a point charge Q located at the origin at a point
distant from the charge by r.

Solution

Our method is to calculate the potential energy, U, at the desired point if one places a “test charge” ¢
at that point. Then the potential will equal U,/q. Using Eq. (4.1), we get U, = kqQ/r, and then:

V = kQ/r = (1/4ney)Q/r (4.3a)

This is the potential produced by a single charge Q at a point that is distant from the charge by r. If we
have a collection of charges, Q,, then the potential will equal:

V=kY QJr;=(1/4ne) 3 Qyr; {4.3b)

Problem 4.4. A charge of 1.75 x 1075 C is placed at the origin. Another charge of —8.6 x 10”7 C is
placed at x = 0.75 m.

(a) What is the potential at a point halfway between the charges?
(b) What is the electric field at that point?

(c) If an electron is placed at that point, what force acts on it, and how much potential energy does it
have?

Solution

(@) The potential equals kY Q/r;. Thus V¥ =(9.0 x 10%)[(1.75 x 107® C/0.375 m) + (—8.6 x 10~
C/0.375 m)] = 2.14 x 10* V. Since V is a scalar we were able to add the values algebraically.

(b) To calculate the electric field we must calculate the magnitude and direction of the fields produced by
each source and then add them vectorially. Thus E=E, + E,. Now |E, | = kQ,/r? = (9.0 x 10°X1.75
x 107¢ C)/0.375% = 1.12 x 10% N/C. Since Q, is positive this field is directed along + x. Similarly,
E; | = (9.0 x 10°)(8.6 x 1077 C)/0.375% = 5.50 x 10* N/C. Since Q, is negative, the field points
toward Q, which is also in the + x direction. Then the total field is 1.67 x 10° N/C in +x.

{(c) An electron has a charge of —1.6 x 107! C. Therefore the force on it is F = gE = (1.6 x 107'° C)
(1.67 x 10° N/C) = 2.67 x 10~ '* N. The direction is opposite to E since ¢ is negative, so F is in —x.
The potential energy is gV = (—1.6 x 1071° C}2.14 x 10* V) = —3.42 x 10713 ],
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Problem 4.5. Refer to the two fixed charges of Problem 4.4. At what two points on the x axis is the
potential zero?

Solution

If the point of zero potential is between the charges, and the distance from the origin to the point is x,

then the first charge is at a distance of x and the second charge is at a distance (0.75 — x) from the point.
The total field is k[Q,/x + 0,/(0.75 — x)] = 0. Q, is positive and (, is negative. Substituting for the
charges, we get: (1.75 x 1075/x) = 8.6 x 1077/(0.75 — x). Then (0.75 — x) = 0.49x, 1.49x = 0.75, x = 0.50
m. If the point of zero potential is not between the charges, and the distance from the origin to the point of
zero potential is x, then the first charge is at a distance of x and the second charge is at a distance (x — 0.75)
from the point. (Recall that in Eq. (4.3a), r is always positive.) The total field is k[Q,/x + Q,/(x — 0.75)] = 0.
Again, Q, is positive and Q, is negative. Substituting values for the charges, we get: (1.75 x 10~ %/x)
= 8.6 x 107 7/(x — 0.75). Then (x — 0.75) = 0.49x, 0.51x = 0.75, x = 1.47 m. A quick check for finite points
on the negative x axis shows that the potential cannot vanish there. Of course, the potential also vanishes at
x— t 0.

Problem 4.6. Four equal charges of 5.7 x 10”7 C are placed on the corners of a square whose side has
a length of 0.77 m.

(a)
(b)
(©)

(@

What is the electric field at the center of the square?

What is the electric potential at the center of the square?

If one brought a charge of 6.8 x 10”7 C from rest at co to the center of the square, what is the
change in the potential energy of the system?

How much work must be done by an outside force to bring in this charge?

Solution

(a)

(b)

()

()

All the charges produce fields of the same magnitude at the center, since they have the same charge
and are equidistant from the center. The charges at opposite corners produce fields that are in opposite
directions, thus canceling each other. The total field at the center is therefore zero.

The potential at the center is the sum of the contribution from each of the four charges. Each charge
produces the same potential, kq/r, where r is the distance from the corner to the center. Thus r =
0.77/,/2 = 0.544 m. The total potential is therefore V = 4(9.0 x 10°Y5.7 x 1077 C)/0.544 = 3.77 x 10*
V. We see that the potential can be non-zero even at a point where the electric field is zero.

The change in the potential is the difference between the potential at the center of the square and the
potential at oc. Thus AV =377 x 10* — 0 =3.77 x 10* V. The change in potential energy is
gqAV = (6.8 x 1077 CX3.77 x 10* V) = 0.026 J. Thus the system gained 0.026 J of energy. (This makes
sense since all the charges are positive so potential energy increases as the fifth charge is brought
closer.)

The work done by outside (non-conservative) forces equals the change in the total mechanical energy
of the system. Since there is no change in kinetic energy, the outside work will equal the change in the
potential energy, W, 4. = 0.026 J.

Problem 4.7. A total charge of 5.4 x 1075 C is uniformly distributed along a ring of radius 0.89 m.

(a)
(b)

What is the potential at the center of the ring?

What is the potential at a point on the axis of the ring at a distance of 0.98 m from the plane of the

ring?

Solution

(a)

All the charge is located at a distance of r = 0.89 m from the center of the ring. Each part of the charge
therefore contributes the same scalar potential at the center, and the total potential is kQ/r
= (9.0 x 10954 x 107¢ C)/{0.89 m) = 5.46 x 10* V.
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(b)) Now all the charge is located at a distance of (r? + x?)!/> = (0.89% + 0.98%)!/? = 1.32 m, and the poten-
tial is (9.0 x 109X5.4 x 107¢ C)/(1.32) = 3.68 x 10* V.

Note how easy it is to calculate the potential in Problem 4.7 in comparison with finding the electric
field in a comparable problem in Chap. 3. This, of course, is a consequence of the potential being a
scalar while the field is a vector.

43 THE ELECTRIC FIELD—POTENTIAL RELATIONSHIP

We know that the electric field is the force per charge and the potential is the potential energy per
charge. The force and the potential energy are related by the work—energy theorem, and therefore the
electric field and the potential must be related in the same manner. We would like to develop that
relationship in more detail at this time. It is useful to do this by considering an opposing force to the
electric force.

When an outside force (non-electric) F, is exerted on a charge in an electric field, and is adjusted to
always be equal and opposite to the electric force, then the positive (negative) work done by that force
in moving the charge from one location to another will equal the increase (decrease) in the electric
potential energy of the charge. If no work is done by this outside force either because the force is zero
(hence there is no electric field) or the force is perpendicular to the direction in which the charge moves,
then there will not be any change in the electric potential energy of the charge. Therefore there is a
change in potential energy (and a corresponding change in potential) only if there is a component of the
electric field in the direction of motion. If one moves perpendicular to E [along Ad, in Fig. 4-1(a)], there
is no change in V. If one moves in the direction of E [along Ad|, in Fig. 4-1(a)], then, for constant E, the
change in potential energy is |F|d= —q|E|Ad,, and the change in potential will equal
AV = — |E|Ad. If the field is at an angle of 8 with the direction of motion (Ad in Fig. 4-1), then the
change in potential will equal AV = — |E|Ad cos 8. If the field is not constant, then one must divide the
path into small segments over which the field can be considered to be a constant and add the contribu-
tion from each segment. Thus, in general;

AV = — Y |E| cos 8 Ad, (4.4)

where the sum is evaluated along the path of the particle [see Fig. 4-1(b)]. We have already learned that
for a conservative force the result of this calculation depends only on the beginning and ending points,
so we can choose any path between those points that we want in evaluating the sum. This relationship
can be used to calculate AV between any two points if the field E is known along a path joining those
points. Eq. (4.4) also shows that an equivalent unit for E is V/m.

Problem 4.8. Two parallel plates carry a surface charge density of + ¢, respectively, and are separated
by a small distance d. Assume that the size of the plates is always large compared with the distance to
the plates.

A — o Path J//E.nd

Fig. 4-1
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What is the electric field in the region between the plates?

What is the potential difference between a point on one plate and a point on the other plate (e.g.
points P, and P, in Fig. 4-2)?

Which plate, the positive or the negative plate, is at the higher potential ?

Solution

(a)

(b)

(©

We learned in the previous chapter that the field between the plates points from the positive plate to
the negative plate, and has a constant magnitude of /¢, .

Since the field is constant and pointing along the direction perpendicular to the plates, we choose our
path in two parts starting at the point P, as shown in Fig. 4-2. Along path 1 we move parallel to the
field to the second plate, and along path 2 we move along the second plate, perpendicular to E, until
the final point. Along path 2 there is no AV since we are moving perpendicular to E. Along path 1,
|AV| = | E|d = ad/e,. Thus the potential difference is, in magnitude, equal to ad/e, .

Along path | the field is in the same direction as the displacement. Therefore, from Eq. (4.4), AV =V,
— V¥, = —od/ey, and the potential decreases as we move from the positive plate (P,) to the negative
plate (P,), and the positive plate is at the higher potential, V,. This illustrates the fact that the potential
always decreases as we move along the direction in which the field points. Since the field points away
from positive charge and towards negative charge, the potential decreases as we move away from
positive or toward negative charge.

Problem 4.9. An isolated conducting sphere is charged with a total charge, Q, of 6.0 x 10~ 8 C, and has
a radius of 1.35 m.

(@)
(b)
(c)
(d
(e)

What is the field inside the sphere, and what is the field outside the sphere?

What is the potential at a distance r from the sphere, if r is outside the sphere?

What is the potential at the surface of the sphere?

What is the potential at a point r within the sphere?

If instead of a conducting sphere we had a thin uniform spherical shell of charge, again with no
other charges nearby, how would the answers to (a)-(d) change?

Solution

(@)

We learned in Chap. 3 that the field inside a conductor is zero, and that the field outside an isolated
conducting sphere, where the surface charge is uniformly distributed, is the same as if all the charge
were concentrated at a point at the center of the sphere. Therefore the field is kQ/r? for r > R, and zero
forr < R.

Fig. 4-2



CHAP. 4]

(©
@

(e)

ELECTRIC POTENTIAL AND CAPACITANCE 107

The field outside the sphere is identical to that of a point charge located at the center of the sphere.
The sum to be evaluated [Eq. (4.4)] for the case of the sphere is therefore just the result for a point
charge, as long as we remain outside the sphere. Therefore the difference in potential between a point
atr > R and a point at oo is AV = kQ/r. Since the potential at oc is chosen to be zero, V = kQ/r.

At the surface r = R. Thus Vo = (9.0 x 10%%6.0 x 1073 C)/1.35m =400 V.

The field inside the sphere is zero. Therefore if one moves from any point inside to any other point
inside the sphere there will be no change in potential. The potential is the same everywhere within the
sphere. At the surface the potential is 400 V, so the potential remains at 400 V for any other point
r<R.

By Gauss’ law (choosing concentric spherical surfaces of radius r < R) since no charge is enclosed
within the shell, the electric field will still be zero. The field outside could again be that of a point
charge at the center so part (a) is unchanged. Similarly, the results of parts (b), (c) and (d) will be
unchanged.

Problem 4.10. A charge Q, of 5.5 x 1077 C is at the center of a conducting spherical shell that has an
inner radius of 0.87 m and an outer radius of 0.97 m (see Fig. 4-3). The conducting sphere has a total
charge of =23 x 1077 C.

(@)

(b)

(©

(@)

How much charge Q, is there on the inner surface of the conducting sphere, and how much charge
Q, is there on the outside surface?

By adding the contributions from all charges, calculate the potential at a point at a distance of 1.05
m from the center.

By adding the contributions from all charges, calculate the potential at a point at a distance of 0.95
m from the center.

By adding the contributions from all charges, calculate the potential at a point at a distance of 0.45
m from the center.

Solution

{a)

We know that in static equilibrium (no charges in motion) the electric field within the conducting shell
is zero as it must be within any conductor. We draw a Gaussian surface at a radius within the conduc-
tor, and note that the flux through that surface is zero, since the field is zero. Therefore the total charge
inside that surface must be zero. The only charges inside the surface are on the inner surface of the
shell and at the center. Therefore the charge on the inner surface must be 0, = —Q, = —5.5 x 1077

Fig. 4-3
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C. The total charge on the sphere is given as —2.3 x 1077 C which must equal Q, + Q; = —2.3
x 1077 =Q; +(—=55x 1077), giving @, =32 x 107" C.

(b) We showed in the previous problems that the potential of a point charge is V = kQ/r. We also showed
that the potential due to a uniform spherical surface charge distribution at a radius R is equal to
Viuesidze = kQ/rif r > R, and V,.,;4. = kQ/R if r < R. In our problem there are three charge distributions:
a point charge at the center, a surface charge at R = 0.87 m and another surface charge at R = 0.97 m.
If r = 1.05 m then we are seeking the potential outside each charge distribution. The total potential is
then V=V, + V, + V; =kQ,/r + kQ,/r + kQ3/r = (9.0 x 10%)[(5.5 — 5.5+ 3.2) x 1077 m]/1.05 m)
=274 x10° V.

{¢) Atr=095m, we are outside of charges Q, and Q,, but within charge Q,. Therefore V; = kQ,/R, =
(9.0 x 10°%3.2 x 1077 C)/0.97 m = 2.97 x 10® V. Furthermore, V, + V, = k(Q, + Q,)/r = (9.0 x 10°)
(55— 55)x 1077/0.95 = 0. Thus ¥ = 297 x 10° V.

Note. We could also have derived this result from the fact that E is zero within the conducting
sphere, and therefore the potential within the sphere is the same as it is on the outer (or
inner) surface. On the outer surface the potential, from part (a) is k(3.2 x 1077)/0.97, which
is the same as we found.

(d) At r =045 m, we are outside of the point charge but inside the two surface charges. The potential
from the point charge is kQ,/r = (9.0 x 10°X5.5 x 10”7 C)/0.45 m = 1.1 x 10* V. The potential from
the surface charges is V¥, + V; = k(Q,/R; + Q3/R3) = (9.0 x 10%)[(—5.5 x 1077/0.87) + (3.2 x
1077/0.97)] = —2.72 x 10® V. The total potential is then 1.1 x 10* —2.72 x 10> =829 x 10° V.

We have seen in the previous problems how to calculate the potential if the electric field is constant,
or if the electric field is produced by a point charge, or if the electric field is produced by a spherical
surface distribution. For other cases, one must use one of two methods to evaluate the potential differ-
ence between two points: (1) calculate the electric field everywhere along a path and then use the sum in
Eq. (4.4) to calculate the difference in potential, or (2) use the charge distribution to calculate the
potential at every point using Eq. (4.3b) and then calculate the difference between the potential at the
points. We summarize some results from using such methods, together with the results we have already
obtained.

For a point charge,

V = (1/4reg)Q/r (4.3a)
For a collection of charges,

V = (1/4neo) Y, Qi/r; (4.3b)
For a spherical surface charge at radius R;

V = (1/4ney)Q/r for r>R (4.5a)
and V = (1/4mney)Q/R for r<R (4.5b)
For a long wire,

AV =V, — V] = —(4/2neg) In (ry/ry) (4.6)

for r, and r, any two perpendicular distances from the wire.
For a long cylinder of length L with symmetric surface charge on the cylindrical portion at radius R
(nR <L)

V = —(A/2ney) In (r/R") for r>R (4.7a)
V = —(A/2rey) In (R/R) for r<R (4.7h)
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where R’ is an arbitrary distance. It is often useful to set V = 0 at the radius of the cylinder, which is

equivalent to setting R’ = R.
For a large, uniformly charged infinitesimally thin plate of surface charge density g,

AV =V, — Vi = —o(|x;| — [ x,])/2¢ 4.8)

where | x, | and | x, | are perpendicular distances on either side of the plate, and | x, |, | x5| < L, where L
is the distance to the edge of the plate.

Problem 4.11. A coaxial cable (see Fig. 4-4) consists of a long, conducting wire, of radius R, with a
linear charge density of 4, and a long conducting coaxial cylindrical shell, with an inner radius R, and
an outer radius R;, and with a symmetric linear charge density of —A. We assume the length to be
much greater than any of the radial distances of interest.

(a) What is the potential due to the cable at a point at a radial distance from the axis r, such that
r>R;?
() What is the potential at a point within the outer cylindrical shell, at R, <r < R,?
{c) What is the potential at a point between the wire and the cylinderat R, <r < R, ?
(d) What is the potential at a point within the wire, at r < R,?
Solution '

(a) We use Eq. (4.7a) for each of the three surface charges since the point in question is outside both
cylindrical distributions. Then V = 0, since the total enclosed linear charge density is A — 1 = 0.

(b)) We note that the charge on the outer cylinder is all on the inner surface. This is because the field
within the conductor is zero, and therefore, from Gauss’ law the total charge within a Gaussian surface
must be zero. Then the charge on the inner surface must cancel the charge on the wire, and equal — 4.
Therefore the point within the cylinder is also outside all the charge distributions, and the result is the
same as in (a), ie. ¥V =0.

(¢) In this case the point in question is outside of the wire but within the surface distribution on the outer
cylinder. Using Eq. (4.7a) for the wire and Eq. (4.7b) for the cylinder we have for the potential: V = ¥,
+V, =(— 4/2meg) In (r/R’) — ( — A/2ngq) In (R,/R'y = (—4/2me,) In (r/R,) (where we recall In (A/B)
=InA —In B).

(d) Since we are now within the inner conducting cylinder where the field is zero, the potential must equal
its value at the surface. Thus, V = (—4/2nr¢,) In (R,/R,).

Note. One could also get this result by adding the contributions of the two surface charge distri-
butions. Then V=V, + V,=(—1/2n¢) In(R,/R)—(—n/2ne;) In(R,/R) = (—4i/2n¢,)
In (R,/R,).

Problem 4.12. Two large thin parallel plates are a distance D apart, and have surface charge densities

Fig. 4-4
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Fig. 4-5

of + o, as in Fig. 4-5. A large conducting plate, of thickness ¢, is placed with one side at a distance of d,
from the positive plate, as in the figure. The conducting plate has a charge density of ¢'.

{a) What is the surface charge distribution on the two sides of the conducting plate?

(b) What is the difference in potential between the positive plate and the conducting plate?

(c¢) What is the difference in potential between the positive and the negative plates?

Solution

(a)

(b)

The field within the conducting plate must be zero, as it is within any conductor. Each charge distribu-
tion produces a field of o/2¢, pointing away from positive and toward negative charge. The field within
the conductor has four contributions: (1) from the positive plate with charge distribution o, (2) from
the negative plate with charge distribution —g, (3) from the side of the conducting plate near the
positive charge with a charge distribution labeled o, and (4) from the other side of the conducting
plate with a charge distribution ¢, = (¢’ — ¢,). The fields produced are: E=E, + E, + E; + E, =
(1/2e0)[0c + 0 + 0, — (¢’ — 0,)] = (1/260X20 + 20, — 0’} = 0. Thus, o, = (¢'/2) — . On the other side
of the plate the charge distribution is then ¢, = (6'/2) + 0. (As a check we add o, + o, to get o’))

To obtain the difference of potential between two points we calculate the field in the region between
the points and, for a constant field perpendicular to the plates use the fact that AV = — EAx, where
AV is the final-minus-initial potential as we move through Ax. In the region between the positive plate
and the conducting plate, the field is E = [0 — (0'/2}]/g, to the right. We get this result either by
adding the field from all four distributions or by using Gauss’ law. By adding the contributions we get
E =(1/2¢p){6 — (6'/2 — 0) — (6'/2 + 0) — (— )] = [0 — (6'/2)]/e,. This field is to the right if the
number is positive. Then the difference of potential between the positive plate and the conducting plate
isgivenby AV =V_—V, = —[o—(d/2)]d,/eq, 0ot V, — V. =[a —(¢'/2)]/¢,.

Using the same procedure we obtain the field between the conducting plate and the negative plate to
be E = [0 + (6'/2)]/¢,. Then the difference of potential between the conducting plate and the negative
plate is given by AV = V_ — V. = — [0 + (0'/2)]d,/¢, . The difference of potential between the positive
and the negative plates is therefore: V, —V_ =V, ~ V) + (V.- V_.)=[o - (6'/2)]d,/¢q + [
+(0'/2)]d,feq = (1/eoM ofd, + dy) + (0'/2)d; — d,)].

44 EQUIPOTENTIALS

In our discussion so far we have learned how to use information about the electric field to obtain
the potential difference between two points. We now shift our attention to the reverse process, obtaining
the electric field from a knowledge of the potential. At every point there is an electric field pointing in
some direction. If we move to a different point along that direction, then the potential will change.
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However, if we move to a different point perpendicular to that direction, the potential will not change.
Thus, for example, for the uniform field between large parallel plates, for every plane perpendicular to E,
the potential remains the same at every point in the plane. Even for non-uniform fields, if we continue
moving from point to point, always in a direction perpendicular to the electric field at that point, we
will sweep out a surface with all points on that surface at the same potential. This surface is called the
“equipotential surface”. This idea can be used to obtain the direction of the electric field at any point if
we know the potential everywhere in the region. We do this by sweeping out the various equipotential
surfaces, and noting that the electric field lines are perpendicular to those surfaces. Once we have the
direction of the electric field we can easily obtain its magnitude. We move a distance Ad in the direction
of the electric field, between nearby equipotential surfaces and note the difference in potential. We know
that along the direction of the electric field AV = — EAd, giving E = —AV/Ad. The minus sign means
that E is positive in the direction that AV is negative, i.e. E points from high to low potential. Thus, a
knowledge of how V varies in a region around a point allows us to obtain the magnitude and the
direction of the electric field at that point.

Problem 4.13. The potential produced by a point charge is V = kQ/r. Use this information to: (a)
determine the shape of the equipotential surfaces, (b) determine the direction of the electric field at any
point and (c) determine the actual value of the electric field at any point.

Solution

(@) The potential at a point at a distance r from the charge is given as V = kQ/r. All other points at the
same distance r from the charge have the same potential. Therefore the equipotential surface consists
of all points equidistant from the source at a distance r. This is the surface of a sphere of radius r. The
equipotential surfaces are therefore concentric spherical surfaces.

{b) The direction of the electric field is perpendicular to the equipotential surfaces. That direction, for
spheres, is in the direction of the radius. Thus the electric field must point along a radius. We know
that it points from high to low potential. If Q is positive, then the potential decreases as r increases.
Therefore the field points in the direction away from the charge, as we expected. For a negative charge
the potential becomes less negative as r increases, which means that V increases as r increases. Then E
points toward smaller r, or toward the center.

() The magnitude and direction of E along a radius is given by | E| = AV/Ad, if Ad is along the direction
of the field. Here Ad = Ar. If we move along a radius from r, to r,, the difference in potential is
AV =V, -V, =kQ(Y/r; — 1/r)) = kQ(r, — r;)/r r;. For very small Ar =r, —r, wecansetr, =r, =
r in the denominator to get AV = —kQAr/r?. Then E = —AV/Ar = kQAr/r*Ar = kQ/r?, as expected.

Problem 4.14. Two large parallel plates carry charge distributions of +¢. The positive plate is at
x = 0, and the negative plate is at x = d, where x is measured perpendicular to the plates. The potential
at any point can be shown to be given by V = V(1 — x/d) when 0 < x < d, i.e. between the plates, and
where V;, and 0 are the potentials at the positive and negative plates, respectively.

(@) What are the equipotential surfaces?
(b) What is the direction of the electric field at a point located at a distance x from the positive plate?
(c) What is the magnitude of the electric field at this point?

Solution

(@) The potential at a point at a distance x from the positive plate is given as V = V(1 — x/d). All other
points at the same distance x from the plate have the same potential. Therefore the equipotential
surface consists of all points equidistant from the plate at a distance x. This surface is a plane parallel
to the plates. The equipotential surfaces are therefore planes parallel to the plates.

(b) The direction of the electric field is perpendicular to the equipotential surfaces. That direction, for a
plane parallel to the y-z plane, is in the direction of x. Thus the electric field must point along x. We
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know that it points from high to low potential. The potential decreases from V, to zero as one
increases x from zero to d. Therefore the field is in the + x direction.

The magnitude of E is given by | E| = AV/Ax, if Ax is along the direction of the field. If we move along
the field from x, to x,, the difference in potential is AV =V, — V|, = V[(1 — x,/d) — (1 ~ x,/d)] =
Volx, — x3)/d = —V,Ax/d. Then | E| = V, Ax/dAx = V,/d, as expected.

Problem 4.15. The electric field lines for a particular situation are shown in Fig. 4-6(a). Along the
curved field line OACD the electric potential decreases linearly by 4.0 V every 3.0 m. At point A the
potential, ¥, ,is 40 V.

(a)
)
(c)
(@)

On the figure, draw the direction of the electric field at A.

Calculate the magnitude of the electric field at A.

Calculate the potential, V., at point C, which is 3.0 m from A.

Calculate the potential, V5, at point B which is 0.010 m along a line perpendicular to the field line
through A.

Solution

(a)

(b)

(0

(d)

The field is tangent to the electric field line at any point. It points from high to low potential. Since the
potential is decreasing as one moves along the line toward C, the field points in that direction. The
direction is shown in Fig. 4-6(b).

The magnitude of the field is equal to AV/Ax if one moves along the direction of E. When moving
from A to C one is indeed moving in the direction of E, and AV/Ax =40 V/3.0m = |E| = 1.33 V/m.
Ordinarily this would be the average magnitude of E over the 3.0 m distance, but because the potential
decreases linearly it is the actual magnitude at any point along the line.

We can obtain V. from AV = V¥.— V, = —EAx= —(1.33 V/m)3.0 m)= —4.0 V. Then V. =40
—40=36V.

Point B is along a direction perpendicular to the electric field. Therefore the potential does not change
as one moves from Ato B. Thus Vg =V, =40 V.

The result that we have obtained for calculating the electric field from a knowledge of the potential

everywhere can be written in a different form. If one moves a small distance Ax in the x direction from a
given point, and the electric field makes an angle 8 with the x axis at that point, then the change in
potential in that direction, AV, = —E cos 6 Ax = —E, Ax. Thus E, = —AV,/Ax, where AV, is the

(@ (b)
Fig. 4-6
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change in V as one moves in the x direction. Similarly, E, = —AV|/Ay, and E, = —AV,/Az. If we have
the three components of the vector E, then we have all the information needed to characterize E at that
point. The vector, whose components are determined by calculating the rate of change of V in each
direction (AV,/Ax, AV, /Ay, AV,/Az), is called, in mathematical terminology, the gradient of V, and
written as VV. Then our expression relating the electric field to the potential at every point in space can
formally be expressed as E = —VF. As you may have guessed this is a calculus relationship and allows
one to carry out sophisticated analyses beyond the scope of this book.

Problem 4.16. Fig. 4-7 shows the value of the electric potential at various points in the x-y plane. The
potential at the origin is 75 V. At points along the x and y axes, at a distance of 0.65 m from the origin,
the potentials are as shown.

(a) Calculate the x and y components of the electric field at the origin. Assume the potential varies
linearly with distance in both the x and y directions.

(b) What is the magnitude and direction of the electric field at the origin?
(c) What can one say about the electric field at other points near the origin?
Solution

(@) To get E, we must calculate E, = —AV,/Ax = —(65 — 75)V/0.65 m = 154 V/m. Similarly, E, =
—AV,/Ay = ~(80 — 75)V/0.65 m = —7.7 V/m. Thus the field has components in +x and in —y of
15.4 V/m and 7.7 V/m, respectively.

() E=(E;*+E?"* =172 V/m. If 8 is the angle of E below the positive x axis, we have tan@ =
|E,JE,| = 0.50 8 = 26.6°.

(c) Since the potential varies linearly in the region from — 0.65 m to + 0.65 m in both the x and y
directions, both E, and E, will be constant in that region. Thus E will be uniform for all points near
the origin.

Problem 4.17.

(@) Show that the surface of a conductor (in static equilibrium) is always an equipotential surface
irrespective of the charge on the surface or of nearby charges.

(b) Show that a hollow region inside a conductor that has no charges in it has no electric field in it as

well.
y
I’y
® 80V
Origin=175 V.
-»- - > X Potentials are shown on x and
85V L4 65V y axis at 0.65 m from the origin.
b 70 V

Fig. 4-7
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a

Conductor

(a) (b
Fig. 4-8

Solution

(@) Consider the conductor shown in Fig. 4-8 with surface S, and consider two points on the surface, a and
b. We can use Eq. (4.4) along any path leading from a to b to obtain AV = ¥, — V,, including the path
shown through the conductor. For the path chosen, which is wholly in the conductor, E is zero
everywhere along the path. Therefore, AV = 0 — ¥, = V,. Since this is true for all points a and b on the
surface, the surface must be an equipotential. (Indeed, the whole conductor 1s an equipotential, by the
same argument.)

(b) Consider the hollow in the conductor shown in Fig. 4-8(b). Suppose there were an electric field at any
point ¢ in the hollow. If we trace the electric field line through point ¢ it would have to start at some
point a on the inner surface and end at some other point b. This is because the electric field lines
always start and end on charges or go off to infinity. Since the electric field points in the same direction
everywhere on the field line from a to b, applying Eq. (4.4) to the path along the field line, cos 8 is
always equal to one and the sum must be a positive (non-zero) value. Therefore, V, — V, # 0 and the
surface cannot be an equipotential. Since we have just shown in part (a) that it must be an equipo-
tential, our hypothesis that an electric field existed at point ¢ cannot be true. Since point ¢ was chosen
arbitrarily, we must have E = 0 at all points in the hollow. (This implies that the hollow is also an
equipotential region with the same value as the conductor.) This result is no longer true if a charge
were placed in the hollow region.

45 ENERGY CONSERVATION

The potential energy associated with the electrical force can be used in the same manner as any
other potential energy. We note that the potential energy of any charge is given by gV, and the change
in potential energy that is used in most energy related problems is AU, = gAV. A positive charge gains
energy as it moves to a region of higher potential (AV positive) and, unless restricted by other forces,
will tend to move to regions of lower potential. A negative charge, such as an electron, will lose energy
as it moves to a higher potential (g negative and AV positive), and therefore tends to move to a region
of higher potential. When an electron moves through a difference of potential of one volt it gains or
loses e(1) = 1.6 x 107!? J of energy. This amount of energy is called an electron-volt, or eV. If the
electron moves through a difference of potential of x volts, the electron gains or loses x electron-volts of
energy. This is a very convenient unit of energy to use whenever one discusses the motion of an electron,
or other particle with a similar charge, since the energy the particle gains (loses) in eV is numerically
equal to the difference of potential in volts through which it moves.
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Problem 4.18. An electron moves from the positive to the negative terminal of a 9 V battery. How
much potential energy did it gain or lose? Did it gain or did it lose potential energy?

Solution

The change in potential energy was 9 eV, since the electron moved through a difference of potential of
9 volts. This corresponds to (9 eV)1.6 x 107'? J/eV) = 1.44 x 10~ '8 J. Since the charge on the electron is
negative, and the change in potential was also negative, the electron gained potential energy. This is in
accordance with our discussion that negative charges tend to move to higher potentials in order to lose
potential energy, and they gain potential energy in moving to lower potentials.

Problem 4.19. We want to produce protons with a kinetic energy of 4.3 x 107!% J. Through what
difference of potential should we accelerate them in order to obtain that kinetic energy, assuming that
they start from rest and that there are no other forces present?

Solution

Since only the electric force is present, and the electric force is conservative, we can use conservation of
energy in this problem. If we start with a stationary proton, then the proton has no initial kinetic energy.
The increase in kinetic energy must equal the decrease in potential energy. Thus the positively charged
proton must move through a difference in potential that will result in the loss of 4.3 x 10~ '3 J. This means
that it must move through AV such that gAV = —43 x 10715 J,or AV = (—43 x 10713 J)/1.6 x 107 1° C
= ~2.69 x 10* V. Alternatively, we could have converted 4.3 x 107'3 J into eV by dividing by 1.6 x 107!°
J/eV, obtaining 2.69 x 10* ¢V. Then we can say that a proton must have fallen through a decrease of
2.69 x 10* V to lose that amount of potential energy.

Problem 4.20. A proton is moving directly toward a fixed nucleus containing 23 protons. The speed of
the proton when it is at a distance of 5.8 x 107 m from the nucleus is 2.4 x 10° m/s. The proton has a
charge of 1.6 x 107 !% C and a mass of 1.67 x 10727 kg.

(a) What was its kinetic and potential energy at this initial distance?

(b) At what distance from the nucleus does the proton stop, i.e. what is the distance of nearest
approach? (Assume the nucleus remains stationary.)

Solution

(@) The kinetic energy of the proton is (1/2)mp? = (0.5X1.67 x 107 %7 kgk2.4 x 10° m/s)* = 4.81 x 1071%J.
The potential energy is U, = kqQ/r = (9.0 x 10%%1.6 x 10712 C)23 x 1.6 x 107*° C)(5.8 x 1072 m)
=9.14 x 107!% J. The total energy is therefore nearly all kinetic energy and equals 4.81 x 10715 ],

(b) By conservation of energy, the total energy must be the same as the proton moves toward the nucleus.
At the point of nearest approach, the kinetic energy is zero, since v = 0. Therefore, the potential energy
must equal the original energy. Thus, kqQ/r=4.81 x 1075 J=(9.0 x 10°(1.6 x 107'®* ()
23 x 1.6 x 1072 C)/r =530 x 10727/r. Thenr = 1.10 x 10712 m.

Problem 4.21. Four charged particles are placed at the corners of a square of side 0.39 m. The particles
have charges of 2.3 uC, —5.6 uC, 7.9 uC and — 1.3 uC as in Fig. 4-9.

(@) How much work was done by outside forces to place those particles in their positions if they were
originally very far away?

(b) If an electron starts with no velocity very far away, what velocity does it have when it reaches the
center of the square? (m, = 9.1 x 1073! kg)
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Solution

(@) We will assemble the particles one at a time. To place the first particle (2.3 uC) in place requires no
work (W, = 0) since there are no forces present as yet. To place the next particle (— 5.6 uC) in place the
outside work W, must be equal to the change in potential energy. This equals W, = kQ,0,/r,, = (9.0
x 10%)2.3 x 107¢ C)—5.6 x 107% C)/0.39 m = —0.30 J. To place the next particle we must again
supply the added potential energy. This additional potential energy is due to the interaction with both

of the particles already in place. Thus W, = kQ4(Q,/r,s + Q,/r;3) = (9.0 x 10°(7.9 x 10~ 8)[(2.3
x 1076/0.39./2) + (— 5.6 x 107%/0.39)] = —0.72 J. Similarly, to add the fourth particle requires
work of W, = kQ4(Q1/rya + Q2/T2a + Q3/r3a) = (9.0 x 10%Y—1.3 x 107)[(2.3 x 1075/0.39) + (- 5.6
x 107%/0.39,/2) + (7.9 x 107%/0.39)] = — 0.19 J. The total work is therefore W, = W, + W, + W,
+W,=-030-072-0.19= —-1211J.

(b) With all the four particles in place, the potential at the centeris V =V, + V, + Vo + V, = kKQ, + Q,

+ Q5+ Q)/r=(90 x 10°(23 — 5.6 + 7.9 — 1.3) x 107%/0.195,/2 = 1.08 x 10° V. At a large distance,

the potential is zero. Therefore the electron loses potential energy equal to 1.08 x 10% eV. This is
converted into kinetic energy. Then, (1/2)mv? = (1.08 x 10° eVX1.6 x 107'° J/eV) = 1.73 x 1074 J.
The mass of an electron is 9.1 x 1073 kg, so v2 =2(1.73 x 10714)/9.1 x 103! = 3.80 x 10'¢, and
v=19 x 10® m/s.

Problem 4.22. Two large, thin parallel plates, of length L, are perpendicular to the x axis and carry
charge distributions of + ¢ (as in Fig. 4-10). The positive plate is at x = 0, and the negative plate is at
x = d. The potential at any point is given as V = V(1 — x/d) for 0 < x < 4, i.e. between the plates. An
electron starts at the bottom, halfway between the plates, with an upward speed of v, . The electron just
passes the end of the plate at the top. Assume that the field is uniform throughout the region between
the plates, and the potential is as given above. Give your answers in terms of L, d, vy, ¢ and e (where e,
as always, is the magnitude of the electron charge).
(a)

How much kinetic energy, AK, did the electron gain until it leaves the region between the plates?

rmd s

[
® » c(________—
o

Fig. 4-10
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(by What is the x component of the velocity of the electron?
(¢) How much time does it take for the electron to move through the plates?

Solution

{a) We will use conservation of energy to solve this part of the problem. The gain in kinetic energy AK
must equal the loss in potential energy. This loss is equal to eAV =e(V; — V)) = e(V; — V,d/2) =
eV, d/2. Thus the gain in kinetic energy is eV, d/2. Recalling that the potential difference across the
plates is just (V, — 0) = Ed = ad/e,, we have finally AK = ead?/2¢,.

(b) The gain in kinetic energy is K; — K; = ()m(v2 — ;%) = (PImlv,? + v, * — v;,?) where we recall v;, =
0. Now, v, =, does not change, so AK = (3)mr,? and using our results in (a) we get: v, =
[(e/mad?/ea]"2.

{¢) Since v, does not change, the time to move a distance of L in y is t = L/r,.

Note. 1f we wanted we could solve for V, since we must also have r,, = at where acceleration a =
| (e/m)E| = (e/m)o/e,, and we can solve for r and insertin ¢ = L/,

4.6 CAPACITANCE

We have seen that positive work is required by an outside force to separate opposite charges that
were initially together. For instance, we may have two metal surfaces which were initially uncharged,
and then remove negative charge from one surface and place this charge on the other surface. The first
surface that lost negative charge becomes positively charged, and the other surface gains the same
negative charge. The more charge that we transfer the harder it becomes to transfer the next unit of
charge because of the Coulomb forces between the charges, and the more work we have to do to
transfer additional charge. This work is manifested in the resultant potential energy of the final distribu-
tion of charge.

When a given distribution of charge is reached, we wish to be able to calculate the potential every-
where in space. This will allow us to determine the energy necessary to bring another charge from one
location to another. We know that each conductor surface will be an equipotential surface once charges
have reached their equilibrium positions. Therefore each surface has its own potential and potential
differences exist between the various surfaces. For a particular pair of conductors we label this potential
difference AV. Since we can always set our zero of potential at our will, we can take one of the surfaces
to have zero potential and the other to have a potential V which will equal AV. Therefore we will call
the potential difference between the two surfaces V.

Let us consider the case of two isolated conductors (labeled 1 and 2) with charge +Q on one and
—Q on the other, and a potential difference V between them. Depending on the shape of the conductors
and their positions relative to each other, the charges on the conducting surfaces will distribute them-
selves with some definite (but not necessarily uniform) charge distribution, ¢, and o, . In general, ¢, and
g, will vary from point to point on the respective surfaces. In principle, the potential and electric field
everywhere outside and on the conductors, can be determined by dividing the surfaces into tiny seg-
ments and calculating the potential (or electric field) at any point by adding the contributions of all the
electric charges in all the tiny segments. It 1s not hard to see that if we doubled (or halved, or tripled) the
electrical charges in all segments on both surfaces we would not disturb the equilibrium on those
surfaces, and furthermore the potential and electric field everywhere would also double (or halve, or
triple) as a consequence. This is equivalent to saying that if we doubled the total charges (Q and — Q) on
both isolated conductors (and waited for equilibrium to return), the potential V between them would
double (as would the surface charge distributions ¢, and o, , everywhere on the surfaces). From this we
conclude that V is proportional to Q, as long as the geometry stays the same. Thus, if for example we
transfer charge between one conductor and the other, ¥ would increase in proportion to the increases
in + Q on the surfaces. We can therefore write V = (1/C)Q, where 1/C is the constant of proportion-
ality, or equivalently, Q = CV, and the constant C is called the capacitance of the system. This constant
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C depends on the geometry of the conductors, their size, shape and position, but it does not depend on
the charge on the plates. For any particular geometry we can calculate its capacitance by assuming a
certain charge and calculating the resultant V. Then C = Q/V, and for any other Q this ratio remains
the same. The unit for capacitance is the farad (F). A capacitance of one farad is very large, and more
common capacitances are uF (107% F) or pF (10~° F). If we build a unit containing two conductors
with relatively large surfaces close to each other (but not touching) we call this object a capacitor whose
capacitance is C. The name derives from the fact that C represents the capacity of the two conductors to
store charge on their surfaces per unit potential difference (per volt) between them. A large capacitance
means that the capacitor holds a lot of charge per volt, while a small capacitance means that only a
small amount of charge is held per volt. We will first discuss the calculation of capacitances for several
specific geometries, and the use of these results. Then we will discuss the energy needed to charge a
capacitor and the interpretations of these results. The most common capacitor geometry is that of two
close parallel, conducting plates.

Problem 4.23. A “parallel plate capacitor” consists of two parallel plates, of area A4, separated by a
small distance d and carrying charges of + Q (as in Fig. 4-11). Assume that the field is uniform
throughout the region between the plates.

{(a} Whatis the field between the plates?

(b) What is the potential difference between the plates?

(¢) Whatis the capacitance of this parallel plate capacitor?
Solution

(@) The field was calculated in Problem 3.23, and equals E = o/¢,. Ignoring edge effects, the surface
charge, a, is uniformly distributed and ¢ = Q/A, giving E = Q/eqA. This is a uniform field pointing
from the positive to the negative plate.

(b) As shown in Problem 4.8(b), the potential difference between the plates is just V = Ed = ad/e, =
Qd/eyA. The positive plate is at the higher potential.

(¢) Using the results of (b), we get C = Q/V = Q/(Qd/e, A) = ¢q A/d.
Problem 4.23 shows that the capacity of a parallel plate capacitor can be written as
C = ¢, A/d (parallel plate capacitor) 4.9

Note. The capacitance (ability to hold, or store, charge per volt) increases in proportion to the
cross-sectional area of the plates, A. Thus doubling the area doubles C. The capacitance
also varies in inverse proportion to the separation distance, d. Thus halving 4 doubles C as
well.

/7- Area A

+Q =%

Fig. 4-11
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Problem 4.24. A parallel plate capacitor has a capacitance of 2.5 uF and an area of 156 m?.
(@) What is the distance between the plates?
(b) If one applies a voltage of 75 V to the capacitor how much charge is collected on each plate?

(¢) How much work is needed to move an additional charge of 1.8 x 1078 C from the negative to the
positive plate?

Solution

(@) The «capacitance is given by C =g, 4/d=25x10"%=(885x 1072156 m?/d. Thus
d=552x10"*m.

(b) Thechargeis givenby Q =CV =25 x 10"¢FY75V) =188 x 107 ¢ C.

(c) Since the charge we are moving is small compared to the charge already there the potential will hardly
change as we move the charge. Therefore the work needed, which is just the increase in potential
energy, will be given by AQV = (1.8 x 1078 C)75 V) =135 x 107¢ J.

Problem 4.25. A parallel plate capacitor is built from plates with areas of 888 m? each and a separa-
tion of 1.6 x 10”* m. The maximum electric field that can exist in the capacitor before the air ionizes
causing sparking is 3.1 x 10% V/m.

{a) What is the capacitance of this capacitor?
(b) What is the maximum voltage that can be applied to this capacitor?
Solution
{(a) The capacitance is given by C = ¢, A/d = (8.85 x 107 !2)888 m?)/(1.6 x 10 *m) =491 x 10" *F.

() The maximum electric field that the capacitor can stand before electrical breakdown is 3.1 x 10% V/m.
The electric field is equal to Q/e, A = CV/gg A = 3.1 x 10%. Thus V = (8.85 x 107!%) (888 m?)
(3.1 x 10% V/m)/4.91 x 107% F = 496 V. This could have been derived more simply using the relation-
ship that V = dE for a uniform field, giving ¥ = (3.1 x 10® V/m)1.6 x 10™*m) = 496 V.

Problem 4.26. A capacitor consists of two thin concentric hollow metal spherical shells of radii r, and
r, (ry <r,) with charges Q and — Q, respectively

(a) What is the capacitance of this capacitor?

(b) Show that all the charges reside on the outer surface of the inner shell and the inner surface of the
outer shell.

Solution

(a) The potential produced by a uniform spherical shell of charge Q was calculated earlier and given by
Eqgs. (4.5): V = (1/4mey)Q/r for r > R and V = (1/4n¢,)Q/R for r < R. On the outer surface of the outer
spherical shell the potential is zero, since we are outside of each shell and the potential is therefore
V=V+V,=kQ/r+ K{(—Q)/r=0,r > r,. On the outer surface of the inner shell the potential from
sphere two is still —kQ/r, but the potential from the first sphere is kQ/r,. Thus V = kQ(1/r, — 1/r;),
which is also the potential difference between the shells (since the potential at the second shell is zero).
Then C = Q/V = 4neyf(1/r, — 1/r,).

(b) Since the potential is constant everywhere in the outer shell and beyond (actually zero) the electric field
is zero everywhere in this region. Since E = o/e, just outside a conducting surface, we have ¢ = 0 on
the outside of the outer sphere, and all the charge, — Q, resides on the inside surface. Similarly, in the
hollow region within the inner shell the potential is constant [(Eq. (4.5)] and the electric field again
vanishes. Thus a/e, on the inner surface vanishes as well, and the entire charge Q resides on the outer
surface of the inner shell.
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Problem 4.27. The two shells of Problem 4.26 have radii of 1.6 m and 1.8 m,
(a) What is the capacitance of this arrangement?

() How much voltage must be applied across the shells to store a charge of 3.7 x 1078 C on the
shells?

Solution

() The capacitance was derived in the previous problem and equals C = dney/(1/r, — 1/r,) = 4n(8.85
x 1071 [1/1.6m — 1/1.8 m) = 1.60 x 10~* F = 1.6 nF.

() The charge is given by @ = CV,s0 V = Q/C = (3.7 x 10™® C)/(1.6 x 10~° F) = 23.1 V.

47 COMBINATION OF CAPACITORS

Capacitors have many applications in electrical circuits, both using constant sources of voltage such
as batteries (Chap. 3), and using time varying sources of voltage (Chap. 9) such as supplied by the
electric utility. Often one uses combinations of capacitors and we inquire into the result of making such
combinations. There are two basic different ways in which one can combine capacitors. The two are
called series and parallel combinations. We will see later that the same types of combinations can be
applied to resistors as well. In what follows we will assume that the pair of close conductors constituting
a capacitor is sufficiently far from the conductors making up the next capacitor, that we do not have to
worry about “cross-capacitance” between the two capacitors. In addition, all connections between
capacitors are made with conducting wire, and the conductors and wires so connected must all be at the
same potential when we have equilibrium. For visual simplicity we will carry out our discussion in the
context of parallel plate capacitors.

First we discuss what is called the parallel connection of capacitors. Here one side of all the capa-
citors are kept at a common potential by being connected to each other by a conducting wire, while the
other sides of all the capacitors are kept at a (different) common potential by connection to a second
conducting wire. This is illustrated in Fig. 4-12. Here the two sides of C, (the symbol for a capacitor is
—{|—) are connected to points a and b by conducting wires and so are the two sides of capacitor C,. If
one has three capacitors in series one would connect C, between the same two points. The left sides of
the capacitors are thus at a common potential, and the right sides are at a different common potential.
The potential difference across each capacitor is the same, since in each case it will equal V, — V. This
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is the defining characteristic of all parallel circuits: each branch has the same potential difference or
voltage. We will use the next problem to develop the properties of a parallel circuit.

Problem 4.28. Consider the two capacitors in Fig. 4-12, connected between a difference of potential,
V=V,-V.

(@) What is the charge on the plates of each capacitor?
(b) What is the total charge collected on the equipotential surfaces connected to points a and b?

(c¢) If one replaced the two capacitors with a single capacitor, collecting the same charge between the
two points, what capacitance would it have? (This is called the “equivalent” capacitor.)

(dy IfC, =23uFand C, = 5.7 uF, what is the equivalent capacitance of the combination?

Solution

@ @, =C/Vand Q,=C,V;ie,if ¥, >V, @, and @, will appear on the left plates of C, and C,,
respectively, while —Q, and — @, will appear on the right plates of C, and C,.

(b) The total charge is just the sum of @, and @, on side a and —(Q, + Q,) on side b.

(c) The equivalent capacitance would have to be charged to (Q, + Q,) when the potential difference across
itis V.Thus, C,,V = Q,+ @, = C,V + C, V =(C, + C,)V. Dividing out by V we get:

C.. = C, + C, (parallel combination) (4.10a)
(d) Using the given values for C, and C, we get C., = (2.3 + 5.7) uF = 8.0 yF.

If capacitor C; were also connected as shown in Fig. 4-12 the same reasoning as in Problem 4.28
would lead to C,, = C, + C, + C;. In general, for any number of parallel capacitors,

Ca=2. G (4.10b)

The other possible way to combine two capacitors is in series. Consider the two capacitors in Fig.
4-13. Here one plate of the first capacitor is connected to point a and the second plate is connected to
the first plate of the next capacitor through point c. The second plate of the second capacitor is con-
nected to point b. If there are more capacitors in series then the second is connected to the third and so
on until the last is connected to point b. Now the potential across C, need not be the same as is the
potential V, across C,, since V, =V, — V., and V, = V, — ¥, and points a and b are not connected.
Indeed the total voltage between a and b is V = V, + V,. If we examine the figure more closely, we note
if the first plate of C, accumulates charge + @, (inserted or removed through point a), then the second
plate of C, will have a charge of (—Q,). This follows because if it did not, the electric field immediately
outside the plate would not vanish, and charges would flow in the wire (through point ¢) until the field
vanished. This would occur when the charge is —Q,. From where did this —Q, charge come? It must
have come from the first plate of the second capacitor. In that case the second capacitor has the same
charge as the first, +Q, on its first plate. Using the same reasoning as for the first capacitor, we
conclude that the second capacitor will have charge —Q, on its second plate (where we presume that
point b is connected to other parts of the circuit to or from which charges can flow). We are now ready

M =hK-r h=K-K)
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to calculate the equivalent capacitance that we could use to replace C, and C,.

Problem 4.29. Consider the two capacitors in series in Fig. 4-13. Calculate the equivalent capacitance.
Solution

We have just shown that each capacitor contains the same charge which we call Q. This is the charge
which is supplied by the source of potential between a and b, and is the charge that will be on the equiva-
lent capacitor that we can use to replace the combination of C, and C,. Now ¥, = @/C, and ¥, = Q/C,.
Then V =V, + V, = Q(1/C, + 1/C;) = Q/C,,. Thus

1/C.q = 1/C, + 1/C, (series combination) (4.11a)

The same reasoning as used in Problem 4.29 can be used to generalize to any number of series
capacitors:

1/Cq =Y. (1/C) (4.11b)

Often we have situations in which a number of capacitors are used in a circuit, some in series and
some in parallel. In many cases we can combine the results of Egs. (4.10) and (4.11) to obtain an overall
equivalent capacitance.

Problem 4.30. Consider the combination of capacitors shown in Fig, 4-14(a). Here C, = 2.5 uF, C, =
35uF,Cy =5.6 uFand C, = 1.3 uF.

(a) What is the equivalent capacitance of C, and C; ?
() What is the equivalent capacitance between points a and b?

(c) If a voltage of 10.5 V were provided between points a and b, what charge would accumulate on the
equivalent capacitance?

(d) For case (c), what charge accumulates on capacitor C,? On capacitor C, ?
(¢) What charge accumulates on capacitor C, ? On capacitor C; ?
Solution

(@) Capacitors C, and C, are in parallel (points ¢ and d play the role of points a and b of Fig. 4-12). They
can therefore be replaced with an equivalent capacitance of C,, = C, + C5 = (3.5 + 5.6) uF = 9.1 uF
[see Fig. 4-14(b)].

{b) 1f we replace C, and C, with an equivalent capacitance C,, = 9.1 pF, we then have three capacitors in
series. Using Eq. (4.11b), we get the final equivalent capacitance to be 1/C; . = 1/C; + 1/C_
+1/C,=1/25+1/9.1 + 1/1.3 = 1.28, and C;_,, = 0.78 uF [see Fig. 4-14(c)).

CI
G G Ceq =G+ G=— Cf_eq
b.__H b._"_ b
Cs Cy

(@ (b) ()
Fig. 4-14
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{c) The voltage across C; ., equals 10.5 V. Then the charge on the equivalent capacitor is @ = C; V' =
8.21 x 107 C.

(d) 1In a series circuit, the charge on each capacitor is the same and is equal to the charge on the equivalent
capacitor. Thus the charge on both C, and on C, is 8.21 x 107¢ C.

{e) The total charge on the two parallel capacitors C, and C, is the charge on C_, which equals
8.21 x 107° C. This charge is distributed between C, and C,. To get the individual charge Q, or @,
we need the voltage across each capacitor. We know that, for a parallel combination, the voltage
across each capacitor is the same and is equal to the voltage across the equivalent capacitor. We can
easily calculate the voltage across the equivalent capacitor V' = Q/C,, = (8.21 x 107° C)/(9.1 uF)
=090V.ThenQ, = C,V' = (3.5 x 107 F)0.90) = 3.16 x 10 ¢CandQ, = C,V' = (5.6 x 10”4 F)0.90)
= 5.05 x 107¢ C. Note that Q, + Q5 = 8.21 x 10~% C, as required.

48 ENERGY OF CAPACITORS

As stated previously, whenever we charge a capacitor we must do work to bring more positive
charge to the plate that was already positively charged, and similarly to the negative plate. This work is
converted into potential energy of the capacitor, which can be viewed as the energy stored by the
charges that have been separated. As we will see, we can also take an alternative viewpoint that the
effect of separating the charges is to produce an electric field in space, and that the accumulated energy
is stored in these electric fields.

If a capacitor is charged to a difference of potential V, then the work by an outside force that is
needed to transfer an additional small charge AQ from the negative to the positive plate is
(AQ)V = Q(AQ)/C. Using arguments similar to those used to calculate the potential energy of the spring
(Beginning Physics I, Problem 6.8), we can show that the work needed to accumulate a charge of Q on
the capacitor is W = (3)Q%/C. Then the energy stored in a capacitor can be written as

U, =(})Q%/C = (3)CV? = (HQV (4.12)

Problem 4.31. Derive the expression for the electrical potential energy stored in a capacitor C with
charge Q [Eq. (4.12}]

Solution

We know that when the capacitor is charged to some value g, the potential is given by ¥, = q,/C. The
work necessary to bring the next increment of charge, Aq, across [so that the new plate charge will be
(g, + Ag) and —(g; + Aq)], is given by: AW, = V| Aq. In Fig. 4-15 we show a plot of potential difference vs.
charge for our capacitor, as well as the increment from g, to g; + Ag. Clearly, AW, is just the area under the
V vs. g curve between the adjacent dotted vertical lines. The total work done in bringing charges across,
starting from g = 0 to g = @ is just the triangular area under the ¥ vs. q curve between the origin and
g = Q. Thisis just: W = ($)QV = (3)Q%/C = (4)CV? as indicated in Eq. (4.10).
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Problem 4.32. A capacitor with C = 82.3 uF is charged to a voltage of 110 V.
(@) How much charge is accumulated on the capacitor?
() How much potential energy is stored in the capacitor?

{c) If the voltage on the capacitor is to be increased to 150 V, what additional work will have to be
done?

(d) If the capacitor is discharged from 150 V to 75 V, how much work can be done by the electric field
on the moving charges?

Solution
{a) The charge on the capacitoris ¢ = CV = (823 uFX110V) = 9.05 x 107* C.

(b) The potential energy is given by Eq. (4.12) as U, = ($)CV? =(§¥82.3 x 107° F)Y110 V)* =0.50 1.
(Alternatively, U, = $QY/C = (34X9.05 x 10~ 3C)*/(82.3 uF) = 0.50 I,

(¢} The final potential energy is (1/2§82.3 x 107 °X150)* = 0.93 J. The additional work is W = AU, = U,
— U, =093 — 050 = 043 J.

(d) When the electric field does positive work the electric potential energy decreases by a like amount.
Thus W = —AU, = U, — U, = 093] — (X823 x 107°K75)* J = 0.70 J.

Problem 4.33. Consider the combination of capacitors used in Problem 4.30, with the voltage of 10.5
V between points a and b (Fig. 4-14).

{®) What is the total potential energy stored in the combination?
(b) What is the energy stored on each of the capacitors?
Solution

(@) We showed that the equivalent capacitance of the combination between points @ and b is 0.78 uF.
Then the total energy stored is ($)C; ., V? = (4X0.78 uFX10.5)* = 4.3 x 1077 J.

(b) For each capacitor we can use either U, = $)cv?or U,= (4)Q*/C. On C, and C, we know that the
charge is 8.21 x 107° C, so the energies are U, = (4k8.21 x 107¢)%/2.5 uF = 1.35 x 107° J, and
Upe = (4X8.21 x 1079/1.3 uF =259 x 1073 J. For C, and C, we know that V' =0.90 V. Thus
U, = ($)3.5 uFX0.90)* = 1.4 x 107° J, and U_, = (3X5.6 uFX0.90)* = 2.3 x 107° J. The total energy
is then (1.35 + 2.59 + 0.10 + 0.23) x 1073 J = 4.3 x 107° J, as we found in part (a).

The energy that is stored in a capacitor can be viewed as the energy stored by the charge that has
been separated. As a result of separating these charges, electric fields are established in space. We can
therefore, alternatively, view the work done in separating the charges as the work required to produce
these electric fields. The energy stored would then be viewed as the energy stored in these electric fields.
We will illustrate this view by using a parallel plate capacitor as an example, but the result we derive
will be valid for all situations in which electric fields are established.

Problem 4.34. Consider a paralle! plate capacitor whose plates have an area of A and are separated by
a distance d. As shown previously the capacitance is given as C = g, A/d. A difference of potential V is
established between the plates.

(a) Derive an expression for the energy stored in the capacitor in terms of the dimensions of the
capacitor and the (constant) electric field within the capacitor.

{b) Derive an expression for the “energy density” (the energy per unit volume) within the capacitor.
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Solution

(@) We know that the electric field within a parallel plate capacitor is E = V/d, and that the energy stored
is U, = ($)CV? = (§Xeo A/ANEd)Y = (3Xeo E*X Ad).

(b) The volume within the capacitor is Ad. In this volume the electric field is given by the formula we used
{again ignoring slight edge effects). Outside of this volume, the electric field is essentially zero. Thus the
energy density is U, = ($)e, E2. This is a general expression for the energy density (we will modify this
slightly in the next section)

Upa = 3o E? (4.13)

Problem 4.35. A parallel plate capacitor has a capacitance of 2.6 uF. The plates are separated by a
distance of 0.63 mm.

(a) If a voltage of 34 V is applied to the plates of the capacitor, calculate the energy stored in the
capacitor.

(b) Calculate the electric field within the capacitor.
(¢) Calculate the energy density within the capacitor.
(d) Use the results of parts (a) and (b) to obtain the area A of the capacitor plates

(e) Calculate the energy stored in a cylindrical volume of base area 4’ = 0.36 m? extending from one
plate to the other within the capacitor.

Solution

(@) The energy stored is (3)CV? = ($)(2.6 uF)}34 V) = 1.50 x 107 % J.

(b) The electric field within the capacitor is E = V/d = (34 V){0.63 x 1073 m) = 540 x 10* V/m.

(c) The energy density is given by U,y = (}NeoE?) = ($¥8.85 x 107'2)5.40 x 10%)* = 1.29 x 1072 J/m*.
{d) U,=Uyf(Ad)—1.5x 1073 =(1.29 x 1072 J/m2%0.63 x 1073 m)4 - A = 185 m2.

(¢) The volume of the cylinder is Ad = (0.36 m2)0.63 x 107 m) = 2.27 x 10 * m>. The energy stored in
that volume is the energy density times the volume = 1.29 x 1074(2.27 x 107*) =293 x 107¢J.

49 DIELECTRICS

So far we have discussed only cases in which charges establish electric fields and potentials in empty
space or on conductors. If the region includes other, non-conducting materials, even when the materials
are not charged (neutral), the atoms and molecules within that material may alter the fields that are
otherwise produced. We have already seen that when neutral conductors are placed near {ree charges,
the free charges in the conductors redistribute themselves on the surface and thereby produce fields of
their own which must be added to the fields of the original charges. Unlike conductors other neutral
materials do not have free charges and we must consider what mechanism might cause electrical effects
to arise.

Normal insulating materials consist of atoms and molecules that are composed of positively charged
nuclei and negatively charged electrons that are tightly bound together with no loose outer electrons
that are free to roam. In the presence of an electric field the positive and negative charges in the atoms
and molecules are pulled in opposite directions. As a result, the atoms and molecules will become
somewhat “polarized” with the positive and negative charges becoming slightly separated from their
equilibrium positions. This separation is expected to be approximately proportional to the magnitude of
the electric field as long as the field is not too large. The (slightly) separated charges will produce their
own electric field which must be added to the field established by the original charges. In general this
can lead to many complications, and we will consider only a special case in which the effect can be
easily understood.
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Consider a parallel plate capacitor which is filled with some insulating material. We call this
material a “dielectric” since, as we will show, it will produce its own electric field in a direction opposite
to the original field. If we place a surface charge distribution of + ¢ on the plates of the capacitor, this
charge will produce an electric field of a/¢, within the capacitor. The field will point from the positive to
the negative plate. This field will cause a polarization of the material such that each atom will have its
positive charge move closer to the negative plate (see Fig. 4-16). We will then have tiny “dipoles™
throughout the material with positive charge to the left and negative charge to the right. In the interior
of the dielectric the material remains uncharged since the shifting of negative charge slightly to the right
from one parallel layer will be compensated by negative charge shifting into that layer from the next
layer to the left. Only at the surfaces, next to the plates, will charge accumulate. On the left surface in
Fig. 4-16 the electrons that shift to the right are not compensated for and a net positive charge appears;
on the right surface negative charges moving from the layer just to the left of the surface accumulate on
the surface, and cannot be compensated for by electrons moving further to the right. Since the bulk of
the dielectric remains neutral, the net “polarization” charges on the two surfaces of the dielectric are
equal and opposite. Thus the dielectric develops a surface charge next to each of the plates which is of
opposite sign to the original charge on the plates. This is equivalent to an additional charge added to
the plates which produces its own electric field in a direction opposite to the original field. The total
field within the dielectric will therefore be reduced in this region. If the polarization is proportional to
the field, then the new total field will be proportional to the field that would be produced in the absence
of the dielectric material. We can then write that E = E/k, where E is the total field in the presence of
the dielectric, E, is the field that would be present without the dielectric and « is the *“dielectric
constant” of the material. These dielectric constants vary from material to material, and some common
examples are given in Table 4-1.

With this electric field the potential difference between the plates is V = Ed = Eyd/x = od/keq =
Qd/Axke,, where ¢ and Q represent the free charge density and free total charge on the capacitor plates.
Recalling that the capacitance without the dielectric is Co = g4 A/d, we have V = Q/xCy = Q/C, where
C is the true capacitance in the presence of the dielectric. Thus C = xCy = xeoA/d = eA/d, where ¢ =
k&g is called the “permittivity” of the material. (correspondingly, ¢, is called the permittivity of free
space.) Since x is always greater than 1, the addition of a dielectric within a capacitor increases the
capacitance by the factor x.

The energy stored in the capacitor is still given by U, = (3)CV?2, but both C and V are modified for
a particular free charge Q on the plates. More charge is needed on each plate to produce the same
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Table 4.1. Dielectric Constants in
Common Materials

Material Dielectric constant
Vacuum 1

Air 1.0005
Teflon 2.1

Paper 33

Mica 3-6

Glass 5-10

Water 804

potential difference. Correspondingly, the energy density within the dielectric is modified from its value
in vacuum, and is given by U4 = ($)eE~.

Problem 4.36. A parallel plate capacitor has plates with an area of 71 m?. The plates are separated by
a distance of 0.63 mm and the capacitor is filled with a dielectric of dielectric constant x = 2.6. A
voltage of 34 V is applied to the plates of the capacitor. Calculate (a) the capacitance of the capacitor,
(b) the electric field within the capacitor, (c) the energy density within the capacitor, (d) the surface
charge and charge density on the plates of the capacitor (the free charges) and (e) the surface charge and
charge density on the dielectric layer near the plates.

Solation
(@) The capacitance is C = xey A/d = (2.6)8.85 x 107 '2(71 m?)/(0.63 x 10~ 3 m) = 2.6 uF.
(b) The electric field within the capacitor is E = V/d = (34 V)/(0.63 x 1073 m) = 540 x 10* V/m.

(c) The energy density is given by U,y = (})eE?) = (4X2.6 x 8.85 x 107 12)5.40 x 10%)? = 3.35 x 10~ 2
J/m3.

(d) The charge on the plates is @ = CV = 2.6 uF(34 V) = 8.84 x 10~3 C. The charge density is ¢ = (/A4
= 1.25 uC/m?.

(e) The electric field within the capacitor is produced by two parallel charge distributions, that on the
plates and that on the surface of the dielectric. Since the two distributions are of the opposite sign, the
field produced is E = (¢ — a,)/eq = (@ — Q,)/Ae,. Now from part (b)) E= V/d = 54 x 10* V/m and
(¢ — 6,)/(8.85 x 107'2) =54 x 10* > 6 — 0, = 4.78 x 1077 C/m?. Recalling ¢ from part (d) we have
a4 = 1.25 uC/m? — 048 uC/m? = 0.77 uC/m?>. The total surface charge on the dielectric is then Q, =
g4 A=(0.77 x 1075X71) = 547 x 105 C.

Problem 4.37. A potential difference of 25 V is maintained across the plates of a parallel plate capa-
citor. The plates have an area of 43 m? and are separated by 1.56 mm.

(a)
(b)
(0

(d)
(e

What is the capacitance of the capacitor if it is filled with air?
How much energy is stored in this capacitor?

What is the energy stored in the capacitor if it is filled with a dielectric of dielectric constant
k = 1.9 and the potential is held fixed?

How much work is done when the dielectric is inserted between the plates?

How much charge is on the plates with and without the dielectric?
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Solution

(a)
(b)
(c)

)

(e

The capacitance is C = g, A/d = (8.85 x 107'2)43 m?)/(1.56 x 107* m) = 0.244 uF.
The energy stored = ($)CV? = (}0.244 uF)25 V)? =762 x 1073 J.

The energy stored is changed because the capacitance is increased to kC, = 1.9(0.244 yF) = 0.464 uF.
Then the energy stored is 1.44 x 107# J.

The work done is the change in the energy stored, which equals (1.44 — 0.76) x 107% J = 6.8 x 1075 J.
This work is done in the process of increasing the charge on the plates, as the dielectric is inserted, to
keep the voltage across the capacitor fixed.

The charge in each case equals Q = CV. For air, Q = (0.244 uF)}25 V) = 6.1 x 107° C. For the dielec-
tric, Q = (0.464 uFY25 V) = 1.16 x 107 % C,

Problems for Review and Mind Stretching

Problem 4.38. A square, of side 0.38 m, has a charge @, = 7.6 x 108 C at each of three corners, and a

charge Q,

(a)
(b)
(0

= —5.3 x 1078 C at the fourth corner, as in Fig. 4-17.

What electric field is produced at the center of the square?

What potential is produced at the center of the square?

How much work must be done by an outside force to just remove Q, to a very large distance
(—0)?

Solution

(@)

(b)

(©)

The magnitude of the field produced by each charge is |E| = kQ/r?. The directions of E from the Q, at
the two opposite corners are opposite and therefore cancel out. The direction of E, is toward gq,, and
has a magnitude of | E; | = (9.0 x 10°X7.6 x 10~ % C)/{0.38/,/2 m)? = 9.47 x 10 V/m. The direction of
E, is also toward g, since @, is negative, and has a magnitude of |E,| = (9.0 x 109(5.3 x
107®% C)/(0.38//2 m)? = 6.61 x 10° V/m. The sum of these two fields is toward Q,, and equals
(9.47 + 6.61) x 10° V/m = 1.61 x 10* V/m. This is the total field at the center of the square.

The potential at the center is the scalar sum of the potential due to each charge. It therefore equals
V=3V, + V, =k(3Q, + Q,)/r = (9.0 x 10°X3 x 7.6 ~ 5.3) x 1078 C/(0.38/,/2 m) = 5.86 x 10° V.

To calculate the work needed to remove Q, far away, we must calculate the change in potential energy
between the case of Q, at infinity and at its present position. The change that occurs is that the
potential energy between @, and the three other charges becomes zero at co, while the potential energy
between the fixed three charges does not change. When @, is at its present position its potential energy
equals the sum of kQ,Q,/r,, for each of the three charges. Two of the charges are at a distance of 0.38
m from Q,, and the third charge is at a distance of 0.38,/2 m from Q,. Thus U,; = (9.0 x 10°X7.6
x 107% C—53 x 1078 CX2/0.38 m + 1/0.38,/2 m)= —2.58 x 10”* J. The change in potential
energy, which is the work that is needed, is 2.58 x 107% J.

& o,

0,38 e

o o
Fig. 4-17
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Problem 4.39. A dipole consists of a positive charge q at x =d/2 and a negative charge —g at

—d/2 (as in Fig. 4-18). The dipole “moment”, p, is defined as p = gd, where d is the distance

between the charges.

(a)

(b)
()

What is the potential produced by this dipole at a point on the x axis far from the dipole, ie. at
x»d?

What is the potential produced by this dipole at a point on the y axis?

What is the potential produced by this dipole at a point (x,y) far from the dipole, ie.
r= (xz + y2)1/2 > d?

Solution

(a)

(b)
(©

The potential is the sum of the potential from the two charges. Thus V = kq/(x — d/2) — kq/(x + d/2).
Combining by using the common denominator gives, ¥V = kq{(x + d/2) — (x — d/2)]/[(x + d/2)x — d/2)]
= kqd/(x? — d?/4) ~ k(gd)/x? = kp/x?, since x » d. In the numerator we were unable to neglect d
compared to x, because the x canceled upon subtraction and we are left with 4 as a multiplicative
factor, but in the denominator the x? term clearly dominates.

In this case the potential is V = kg/[y? + (4/2)*]'* — kq/[y* + (—d/2)*]'* = 0.

The distance from the charges to the point (x,y) is [(x — d/2)* + y2]*/? and [(x + d/2)* + y*]1!/? for the
positive and negative charges, respectively. For r » d, each of these is approximately equal to
r = (x? + y¥!2, and we can use this approximation whenever we are not subtracting the two distances
from each other. We can write V = kq[1/[(x — d/2)* + y*]'/? — 1/[(x + d/2)* + ¥*]"/*]. Combining
using a common denominator we get V = [kq/r*]1{[(x + d/2)* + y*1*? — [(x — d/2)* + y*]"/}, where
we have used the approximation that [(x + d/2)? + y2]'? = (x* + y*)"? = r in the denominator. Now,
[(x + d/2)? + y?]V2 = [x* + dx + d*/4 + y?]'/2 ~ [r? +dx]V? 2 (1 + dx/2r%). Similarly,
[x —d/2)* + y* 1Y = [x? —dx + d*/4 + y*]V* = [r* —dx]¥* ~ (1l —dx/2r*). Then V =z (kg/r?)
[(r + dx/2r) — (r — dx/2r)] = kqdx/r® = kp cos8/r*. This result gives us the correct answer for part
(a) when 8 = 0 and for part (b) when 6 = 90°.

Problem 4.40. A charge of @, = 4.35 x 10~8 C is at the center of a conducting spherical shell of inner
radius r; = 0.93 m and outer radius r, = 1.07 m. The shell itself has a charge of Q' = —7.55 x 1078 C.

(@)
(b)
(c)
()

What charge @, is on the inner surface of the sphere and what charge Q, is on the outer surface?
What is the potential at r = 1.55 m?
What is the potential at r = 1.00 m?
What is the potential at r = 0.67 m?

(xg)

2| dn
—

44
X J

65V

Fig. 4-18
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Solution

(a) The charge on the inner surface must equal 0, = —Q = —4.35 x 1078 C in order that the field is zero
within the conducting sphere. Then the charge on the outer surface must equal @, = ~3.20 x 1078 C
so that the total charge on the shellis ' = —7.55 x 1078 C.

(b) The potential at any point is the sum of the potential produced by the three charges: Q, 0, and Q,.
The potential from Q is kQ/r, and the potential from the charges on the surfaces is given by Eq. (4.5):
(@) V = (1/4neo)Q/r for r > R and (b) V = (1/4ne,)@/R for r < R. At r = 1.55 m we are outside of all the
charge distributions, and the total potential is V = k(Q + @, + @,)/r = (9.0 x 10°X4.35 — 4.35 — 3.20)
x 1078 C/1.55 = —~186 V.

(¢} Atr =100 m, we are outside of @ and @,, but inside Q,. Then V = k(@ + Q,)/r + kQ,/r, =0+ (9.0
x 109 —3.20 x 1078 C)/1.07 = =269 V.

(d At r=067 m, we are inside @, and Q,, and V = kQ/r + KQ,/r, + Q,/r;) = (9.0 x 10°¥4.35 x
1078 C)/0.67 m + (9.0 x 109(—4.35 x 1078 C/0.93 m — 3.20 x 10" C/1.07 m) = — 106 V.

Problem 4.41. The capacitance of two concentric spherical shells was calculated in Problem 4.26 as
C = 4ney/(1/r, — 1/r;). Show that as r; = r,, the capacitance approaches ¢, A/d, where A is the surface
area of the sphere andd =r, —r,.

Solution

The capacitance can be written as C = dneyr, rpf(r, — r,). As 1y ~=r,, C — dneyr?/d = ey A/d. This is
just the formula for a parallel plate capacitor of area 4 separated by d. Thus the two spherical surfaces
behave like two parallel surfaces separated by d.

Problem 4.42. A coaxial cable consists of an inner conducting cylinder of radius r, and a coaxial
conducting cylindrical shell of inner radius r,. Calculate the capacitance between the inner and outer
cylinders for one meter of this cable.

Solution

We assume that the inner cylinder has a charge of +Q and the outer cylinder has a charge of —Q. To
calculate the potential difference between the cylinders we make use of the formulas given for charged
cylinders in Eq. (4.7) for a long cylinder with surface charge at R: (a) V = —(4/2=ne,) In (r/R’) for r > R; (b)
V = —(4/2rg,) In (R/R') for r < R. Here A = Q/L, and R’ is an arbitrary radius, usually taken as R. The
potential at r, will then equal V = V¥, + ¥, =0, since we get opposite contributions from the two surface
charges using Eq. (4.7a) for both. At r,, we must use Eq. (4.7b) for V,, since we are now at r <r,. Then
V = —(A/2reg) In (r,/R’) — (— A/27e,) In (ry/R) = (A/2meq) In (ryfry) = (Q/2mey L) In (r,/ry). The capacitance
per unit length C/L = Q/VL = 2rey/In (ry/r,).

Problem 22.43. Several capacitors are connected as in Fig. 4-19(a). The capacitors have capacitance of:
C,=Cg=25uF,C,=C;=C, = 15uF,Cy =35uF. The charge on C;is Q; = 53 x 107 C.

(@) What is the equivalent capacitance between points a and f?
(b) What is the difference of potential between points ¢ and d?
(c) What is the difference of potential between points b and e?
(d) What is the difference of potential between points a and f?
(¢) What is the charge on each capacitor?

Solution

(@) We first calculate the equivalent capacitance of the three capacitors that are in series, C,, C5 and C,.
This is given by 1/C,, = 1/C, + 1/Cy + 1/C4 = 3(1/1.5 uF), or C,, = 0.50 uF. The circuit can then be
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C; G, C; 0.50 pF

(a) (5) ()
Fig. 4-19

redrawn as in Fig. 4-19(b). We then combine this capacitor and the parallel capacitor C, with an
equivalent capacitor C,, of C,, = (3.5 + 0.5) uF, as in Fig. 4-19(c). Finally, we combine the three series
capacitors in this figure to get the equivalent capacitance between a and f; C,, = 1/C, + 1/C,, + 1/Cq,
giving C,; = 0.952 uF.

The potential difference between the points ¢ and d is the potential across C, = Q,/C; = (5.3 x
1078 C)/(1.5 x 1075 F) =353 V.

The potential difference between the points b and e is the potential across each of the parallel capa-
citors Fig. 4-19(b). The charge on the 0.50 uF capacitor is the same as on each of the three series
capacitors, C,, C, and C,, which is 5.3 x 107% C. Thus ¥, =(53 x 107% C)/(0.50 x 10" F) =
106 V.

The potential difference V¢ will equal Q/C,; where @ is the common charge on each of the three series
capacitors in Fig. 4-19(c). The charge on C,, can be calculated as C, .V, = (4.0 x 107® F)10.6 V)
=424 x 1072 C. Then V,; = (4.24 x 1073 C)/(0.952 x 10" F) =445 V.

In part (d) we already used the fact that Q, = Q5 = Q,. = 4.24 x 10~ % C [Fig. 4-19(c)]. From Fig.
4-19(a) we see that 0, = 0, = @, = 5.3 x 107® C. From Fig. 4-19(b) we see that O, = C, ¥, = (3.5
x 1078 FY106 V) =371 x 107° C,

Problem 4.44. In a certain region of space the equipotential surfaces are the surfaces of concentric
spheres. The potential is given as V = — Vyr/r,, where ¥, = 38 V., is the potential at r, = 0.35 m and r is
the distance from the center of the concentric spheres.

(@) What is the direction of the electric field at a distance r from the center of the spheres?

(b) What is the magnitude of the field at this value of r?

(c) Ifa particle with a charge of 6.1 x 10~7 C and mass 9.3 x 107 kg has a speed of 3.8 x 10° m/s at
r = 0.35 m, what is the speed of this particle when it reaches r = 2.8 m?

Solution

(a)

(b)

The electric field lines are always perpendicular to the equipotential surface and point from high to low
potential. The direction that is perpendicular to the surface of concentric spheres is the radial direction.
Therefore the field points along a radius. Since the potential decreases as r increases (it becomes more
negative), the field points away from the center (outward) along the radius.

The magnitude of the electric field is given by |E| =|AV/Ad| when Ad is along the direction of the
field lines. To get |E| we calculate V at r and at (r + Ar) and subtract to get AV. This gives us
|AV | = (Vo/ro)l(r + Ar) — r] = Vy Ar/ry. Thus (E| = AV/Ar = V,/ry, and the magnitude of E is con-
stant throughout the region.
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We use conservation of energy in this part. This requires that the sum of the potential and kinetic
energy be the same at both points. The potential energy is U = qV and the kinetic energy is K =
(Pme?. Initially K = (§¥9.3 x 107'% kg¥3.8 x 10° m/s)’ =671 x 107 ], and U, = g(—¥,) = (6.1
x 1077CY=38V) = —232 x 107 °J Atr =28m,U, = g(— Vyr/ry) = (6.1 x 1077 CY—38 x 2.8/0.35)
= —185x 10"* J. Then adding kinetic and potential energies, 6.71 x 107% — 232 x 10~3
= —185x 107*] + K giving K = 8.33 x 107*J. Then t, = 4.23 x 105 m/s.

Note. Newton’s 2nd law could be easily used to get this result only if the initial velocity were
along a radius. Our result is quite general.

Problem 4.45. A charge Q produces an electric field of magnitude | E| = kQ/r’. How much energy is
stored by this electric field in a spherical shell at radius r and thickness Ar, where Ar < r?

Solution

Within this shell the electric field can be considered constant since r hardly varies. The energy density

is given by U 4 = ()6 E? = (3)eo[(1/4m£0)Q/r?}?. For a thin shell the volume is equal to the surface area of
the shell times the thickness of the shell, or volume = d4nr?Ar. The energy stored equals U, x volume =
QAr/8me, rt.

Problem 4.46. A parallel plate capacitor C is given a charge Q with air between the plates. The capa-
citor is then isolated so that no charge can be added or removed from the plates. Then a dielectric, of
dielectric constant x, is inserted between the plates, filling § of the volume (see Fig. 4-20).

(a)
(b)

(c)

What is the potential difference between the plates when there is air between the plates?

What is the potential difference between the plates when the dielectric material is between the
plates?

What is the capacitance of the plates when the dielectric material is between the plates?

Solution

(a)
(b)

The potential difference is V = Q/C.

The electric field is now produced by the charges on the plates and also by the polarization surface
charges on the dielectric material. The charge on the dielectric material does not produce any field in
the region outside of the dielectric since the two surfaces are oppositely charged and they add to zero
outside the material. Within the material (as discussed in the text for the case of dielectric filling the

,
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Fig. 4-20
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entire space) the electric field will be reduced to E,/x, where E, = Q/¢yA, the field for the dielectric free
capacitor. If we now move along a line from the positive plate to the negative plate, the potential
difference from a to b is E,(2d/3), and the potential difference from b to ¢ is (Ey/xNd/3). Then V =
Eod(2/3 + 1/3k) = (Qd/e; AX2/3 + 1/3x) = Q(2/3 + 1/3x)/C.

(¢) The new capacitance is C' = Q/V = C/(2/3 + 1/3k).

Supplementary Problems

Problem 4.47. A charge of 6.8 x 1077 C is at a distance of 0.96 m from a second charge. The potential energy of
the combination is —3.8 x 10~ 3 J. What is the charge on the other charge?

Ans. —60x1077C

Problem 4.48. Three charges are at the corners of an equilateral triangle of side 2.5 cm. The charges have charge
of 53 x 1078 C, —6.9 x 1078 Cand —9.9 x 108 C. What is the total potential energy of the combination?

Ans. —75x107%]

Problem 4.49. Two charges of g = 5.6 x 10~7 C are located on the x axis at x = +0.76 m.
(@) What is the potential at x = 1.52 m on the x axis?
(b) What is the potential at x = — 1.52 m an the x axis?
(c) What is the potential at y = 1.52 m on the y axis?
(d) What is the potential at the origin, x = y = 0?
Ans. (a)8.84 x 103 V;(h)8.84 x 103 V;(c) 593 x 10° V;(d) 1.33 x 10* V

Problem 4.50. A charge of 5.3 x 10~ C is located at the origin and a second charge of —4.5 x 1077 C is on the x
axis at x = 2.1 m. At what two points on the x axis is the potential equal to 500 V? (Refer to Problem 4.5 for a

similar problem.)

Ans. x=1073mand x= —4.15m

Problem 4.51. A charge of 45 x 1077 Cis at x = —0.19 m and a charge of ~53 x 10"" Cis at x = + 0.19 m.
At what point or points on the y axis is the potential equal to — 500 V?

Ans. y=+143m

Problem 4.52. A ring of uniformly distributed charge has a radius of 1.81 m and contains a total charge of
6.5 x 1077 C.

(@) At what distance from the plane of the ring is the potential equal to 1100 V along the axis of the ring?
(b)) How much work must be done to move a charge of 3.8 x 10~ 7 C from this point to the center of the ring?

Ans. (a)5.0m; (b) 8.10 x 107*]J
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Problem 4.53. A large plane sheet has a surface charge density of 3.7 x 1078 C/m?. Point a is at a distance of 2.1
cm to the left of the sheet, point b is 1.1 cm to the left, point ¢ is 1.1 cm to the right and point d is 2.1 ¢cm to the
right of the sheet.

(@) What is the potential difference between pointsaand b, V, — ¥, ?

(b) What is the potential difference between points band ¢, ¥, — V. ?

(¢) What is the potential difference between points cand d, V, — V; ?

Ans. (a) —209 V;(b)0;(c)209 V

Problem 4.54. Two large parallel plane sheets are uniformly charged and separated by 5.6 cm. The sheet on the
left has a surface charge density of 3.7 x 1078 C/m? and the one on the right has a surface charge density of
—1.3 x 1078 C/m?. Point a is between the sheets at a distance of 1.2 cm from the left sheet, point b is between the
sheets at a distance of 1.2 cm from the right sheet and point ¢ is to the right of both sheets at a distance of 1.2 cm
from the right sheet.

(@) What is the potential difference between points aand b, V, — V, ?

(b) What is the potential difference between points c and b, V, — ¥ ?
Ans. (@)90.6V;(h)50.2V

Problem 4.55. A charge of 6.2 x 1077 C is at the center of a charged conducting spherical shell of inner radius
0.86 m and outer radius 0.91 m. At a distance of 1.00 m from the charge, the potential is 4.92 x 10° V.

(@) What charge is on the sphere?

(b) What is the potential on the surface of the sphere?

(¢) What is the potential at a point within the sphere at a distance of 0.50 m from the central charge?

Ans. (a) —7.33 x 1078 C;(b) 541 x 10* V;(c) 1.01 x 10° V

Problem 4.56. A charge Q, is at the center of a charged conducting spherical shell of inner radius 0.54 m and
outer radius 0.77 m that has a charge Q,. At a point 0.40 m from the central charge, the potential is 985 V and on
the sphere the potential is 880 V.

(a) What is the charge Q,?

(b) What is the charge 0, ?

Ans. (a)1.80 x 1078 C;(b)5.72 x 1078 C

Problem 4.57. A long straight wire has a uniform charge of 6.3 x 107? C/m. What is the difference of potential
between a point a which is 0.62 m to the left of the wire and a point b that is 0.13 m to the right of the wire, i.e.
whatis ¥V, — V,?

Ans. —177V

Problem 4.58. Two long wires are parallel to each other, separated by a distance of 0.43 m, and have uniform
charges of 1.9 x 107° C/m and —7.3 x 10~? C/m, respectively. Point a is midway between the wires and point b is
0.20 m from the negatively charged wire (and 0.63 m from the positively charged wire). What is the difference of
potential V, — W, ?

Ans. 463V
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Problem 4.59. Two long wires are each uniformly charged, with one along the x axis and the other along the y
axis. The one along the x axis has a charge of 1.9 x 107° C/m, and the one along the y axis has a charge of
2.5 x 1072 C/m. Point a is at (0.15, 0.15), point b is at (0.45, 0.15), point ¢ is at (0.15, 0.45) and point d is at (0.45,

0.45).

(@) What is the potential difference V,, — ¥, 7
(b) What is the potential difference V, — V, ?
(¢) What is the potential difference V; — V,?

Ans. (a)494V;(b)37.6V;(c)87.0V

Problem 4.60. A long straight line carries a uniform charge of 6.6 x 107° C/m. A long conducting cylindrical
shell, carrying a charge of —4.8 x 10™° C/m is coaxial with the line and has an inner radius of 0.25 m and an outer
radius of 0.27 m. Use R = 0.25 m for calculating the potential.

(@) What is the linear charge density on the inner and on the outer surface of the cylinder?

(b) What is the potential at r = 0.36 m?

{¢) What is the potential at r = 0.27 m, the surface of the cylinder?

(d) What is the potential at r = 0.15m?

Ans. (@) —6.6 x 107°C/mand 1.8 x 107° C/m;(b) —11.8 V;(c) —2.5V;(d) 582V

Problem 4.61. A long wire has a uniform positive charge distribution along its length.

(a) What are the equipotential surfaces for this wire?
(b) In which direction does the electric field point?

Ans. (a) cylindrical surfaces coaxial with the wire; (b) radially outward

Problem 4.62. A long straight wire carries a charge of 4.9 x 10”7 C/m. A short segment of insulating wire, of
length 0.077 m, is parallel to the long wire, and carries a total charge of 6.8 x 10™¢ C. How much work is needed to
move this short wire from a distance of 5.3 m to 3.1 m from the long wire?

Ans. 322 x1072%]

Problem 4.63. A dipole is at the origin, oriented along the x axis. The dipole moment is 6.7 x 10~% C - m, with

the positive charge on the positive x side. Two charges of + 5.0 x 107 C are separated by a distance of 0.39 m

and placed along the x axis with the positive charge nearer the dipole at a distance of 2.10 m. Refer to Problem 4.39

for the potentials.

(a) What is the potential energy of the charges in this position?

(b) If the charges are rotated by 90° and shifted so that the charges are now both at x =210 m and y = +0.195
m, what is the potential at this position?

(¢) How much work by an outside force was done to turn the charges?

Ans. (@) 197 x 1075 J;(b) 0;(c) — 1.97 x 1075 J

Problem 4.64. A certain charge distribution gives a potential of V = — A4/r®, where A is a positive constant and r
is the distance from the origin.

(a) What are the equipotential surfaces for this potential?
(b) 1In which direction does the electric field point?
(c) What is the magnitude of the electric field? (Hint : See Problem 4.13)

Ans. (a) spherical surfaces centered on the origin; (b) radially in; (c) 4/r®



136 ELECTRIC POTENTIAL AND CAPACITANCE [CHAP. 4

Problem 4.65. A proton has a speed of 6.0 x 10° m/s. The mass of a proton is 1.67 x 10724 kg, and the charge is

the same as on an electron (except that it is positive).

(a) What is the kinetic energy of the proton in Joules and in eV?

(b) If all the kinetic energy was gained by falling through a difference of potential, what difference in potential is
required?

Ans. (a)3.01 x 107'*J = 1.88 x 10°eV; (b) 188 keV

Problem 4.66. An clectron is moving with constant speed in a circle around a proton. The centripetal force is
supplied by the electrical force between the proton and the electron. The radius of the orbit is r = 0.53 x 107'°
(@) What is the potential energy of the system in eV?

(b) Use the equation relating the (mass) x (centripetal acceleration) to the electrical force to deduce the kinetic
energy of the electron in eV directly from the result of (a).

(¢) What is the total energy of the system in eV?
(d) How much energy is needed to ionize the system, i.e. to remove the electron to a position at rest at infinity
(total energy equal to zero)?

Ans. (a) —27.2eV;(b)13.6eV;(c) —13.6eV;(d)13.6¢eV

Problem 4.67. A particle, of mass 1.8 x 10727 kg and charge 1.6 x 10™'® C is fixed to the origin. Another charge,
of mass 9.1 x 107 %! kg and charge — 1.6 x 107'? C is initially at a distance of 9.3 x 107 !® m from the origin and
moving directly away from the origin with a speed of 5.14 x 10° m/s. At what distance from the origin does this
second particle stop and reverse its direction?

Ans. 18 x107%m

Problem 4.68. A capacitor is built out of two closely spaced concentric spherical shells separated by a distance of
0.83 mm. The capacitance is 25 nF. What is the radius of the shells? (Refer to Problem 4.41.)

Ans. 043 m

Problem 4.69. A certain capacitor has an electric field of 2.85 x 10° V/m when 120 V are across the capacitor.
(@) What is the distance between the plates?

{b) 1f the area of the plates is 33 m?, what is the capacitance of the capacitor?

(¢) What is the energy in the capacitor when the voltage across the capacitor is 120 V?

(d) What is the electrical energy density in the capacitor at this voltage?

Ans. (a)0.42 mm; (b) 0.69 uF;(c) 5.0 x 1073 J; (d) 0.359 J/m?

Problem 4.70. Four capacitors are connected in series and a voltage of 12 V is connected across the circuit. The
capacitances are 1.3 uF, 2.5 uF, 6.8 yF and 0.92 uF.

(a) What is the equivalent capacitance of the circuit?

(b) What is the voltage across each capacitor?

(¢) What is the total energy stored in the system?

Ans. (a)0.416 uF;(b)3.84 V,200V,0.73V,542V;(c)3.0 x 107%]
Problem 4.71. Four capacitors are connected in parallel and a voltage of 12 V is connected across the circuit. The
capacitances are 1.3 uF, 2.5 uF, 6.8 uF and 0.92 uF.

(1) What is the equivalent capacitance of the circuit?
(b) What is the charge stored on each capacitor?
(¢) What is the total energy stored in the system?

Ans. (@) 11.5 uF; (b} 15.6 uC, 30 uC, 82 uC, 11 uC;(c)8.28 x 1074 ]
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Problem 4.72. Four capacitors are connected as in Fig. 4-21 and a voltage of 12 V is connected across the circuit.
The capacitances are 1.3 uF, 2.5 uF, 6.8 uF and 0.92 yF.

(@) What is the equivalent capacitance of the circuit?
(b) What is the charge stored on each capacitor?
(c) What is the total energy stored in the system?

Ans. (a) 2.55 uF; (b) 10.5 uC, 20.1 uC, 26.9 uC, 3.6 uC;(c) 1.84 x 107%J

Problem 4.73. A capacitor filled with air has a capacitance of 25 uF. What capacitance would the capacitor have
if it were filled with paper?

Ans. 825 uF

Problem 4.74. An air filled capacitor has a capacitance of 25 uF. If 1/4 of its volume were filled with paper, what
capacitance would it have? (See Problem 4.46.)

Ans. 303 uF

Problem 4.75. An air filled capacitor has a capacitance of 25 uF, and a constant voltage of 18 V is across the
capacttor.
(a) How much charge is stored on this capacitor?

(b) If the capacitor were filled with paper, and the voltage remained the same, how much charge would be stored
on the capacitor?

(¢) How much energy is stored in the system in each case?

Ans. (@45 x 107*C;(h) 149 x 1073C;(c)405 x 1072 J,1.34 x 1072 ]

Problem 4.76. A capacitor has an area of 91 m? and the plates are separated by 0.86 mm. We want the capacitor
to have a capacitance of 25 uF. What must be the dielectric constant of the material filling the capacitor to give this
capacitance?

Ans. 26.7

1.3 pF

%]

SuF
V=12 "

0.92 uF
Fig. 4-21



