Chapter 15

Thermodynamics |: Temperature and Heat

15.1 MACROSCOPIC SYSTEMS

In this chapter and the following three chapters we deal with the properties of large systems, also
known as macroscopic systems. Such systems are characterized by their having myriad atoms and/or
molecules. Some examples of macroscopic systems are (1) The earth and all its contents; (2) a pebble
on the beach; (3) an elephant; (4) an ant; (5) the ant’s brain; (6) the earth’s atmosphere; (7) a cloud; (8)
a mixture of gases confined in a container; (9) a single gas confined in a container; (10) a combination
of solid, liquid, and vapor of a single substance; (11) a carbon electrical resistor; and (12) a bar
magnet.

From these examples we see that a macroscopic system can vary from huge to relatively small and
from extremely complex to relatively simple. The main requirement for a macroscopic system is that it
contain large numbers of the various types of atoms and molecules of which it is composed. The
typical linear dimension of an atom or molecule is less than 1 nanometer (1.0 x 107° m). Even a tiny
cube 0.01 mm on a side would hold a trillion atoms or molecules.

In our previous work we dealt with large systems in the form of rigid bodies and fluids at rest and
in motion. In those cases, however, we were concerned with the collective organized motion of the
system as a whole (e.g., the translation or rotation of the entire rigid body; the organized flow of the
liquid as a whole). What we turn to now are the large-scale measurable properties of a system that
depend on the myriad random motions and interactions of the component atoms and molecules, rather
than their lockstep behavior. The study of such properties constitutes the subject of thermodynamics.

Quasistatic Systems

The thermodynamics of most systems is extremely complex—particularly if the system is filled
with fiery explosions due to chemical reactions, wildly turbulent flow of material, or pressures that
vary from location to location and moment to moment. To allow some kind of simple description, we
have recourse to the notion of a simple system, such as a gas in a container, a liquid in a tube, or a
magnet made of a homogeneous material. Moreover, we generally confine ourselves to simple
systems that are quasistatic. This means either that they are in mechanical, chemical, and thermal
equilibrium (see Sec. 15.2), or that their properties vary so slowly that they can be described at any
instant as if in equilibrium.

Thermodynamic Variables

For all systems (quasistatic or not) with well-defined boundaries, there are two quantities that can
always be used to characterize the system as a whole. One is the volume 7 of the system. The other is
the total energy associated with the system or, as it is called, the internal energy of the system U.
Such physical properties as U and ¥, which describe the system as a whole, are called macroscopic
variables or thermodynamic variables.

Most other thermodynamic variables can be defined only if the system is quasistatic. Thus, in a
'quasistatic system consisting of a gas, liquid, and/or solid confined to a container, the pressure—that
of the gas on the walls of the container and on the liquid and solid surfaces—is a characteristic of the
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system as a whole. Another thermodynamic variable, important in all quasistatic systems, is the
temperature T of the system (see Sec. 15.2).

While P, ¥/ T, and U are among the most common and important thermodynamic variables, we
should note that there are many others associated with systems with special properties. For example,
the resistance R, the voltage drop &, and the current / are additional thermodynamic variables for a
quasistatic simple system in which electricity is flowing. Our discussion of thermodynamics will be
restricted to systems for which P, ¥ 7, and U provide the primary description; these are called
chemical systems.

15.2 THERMAL EQUILIBRIUM AND TEMPERATURE

Types of Equilibrium

Consider a simple system that is in mechanical equilibrium. This will be understood to mean not
only that the system as a whole does not accelerate, but that within the system the different parts are in
mechanical equilibrium with one another—no churning of fluids and no pressure imbalances.

A system in mechanical equilibrium may still undergo change through a chemical reaction. Even
if the reaction is so slow that the mechanical equilibrium is not disturbed, the chemical composition is
changing, and chemical energy is being released. If we assume that there is no change in chemical
composition taking place, we say the system is in chemical equilibrium.

If we have a system in both mechanical and chemical equilibrium, we notice that the system can
still be changing! Consider a cold block of copper brought into close contact with a hot block of
aluminum. After awhile the copper will feel hotter to the touch, even though it has remained in
mechanical and chemical equilibrium. A careful examination will also show that its volume has gotten
somewhat larger. Similarly, the aluminum block will soon feel cooler to the touch, and its volume will
have gotten somewhat smaller. Eventually, the volume changes will stop, and the two blocks will feel
equally cool (or hot) to the touch. The two blocks are then said to be in thermal equilibrium with
each other, or in the same thermal equilibrium state. Two objects in thermal equilibrium with each
other are also said to be at the same temperature.

A system that is in mechanical, chemical, and thermal equilibrium with its surroundings, as well
as internally (one part of the system with another), is said to be in thermodynamic equilibrium.
Thermodynamic equilibrium means that there is no change on the macroscopic level.

Temperature and The Zeroth Law of Thermodynamics

Experiments involving thermal equilibrium of systems show that all systems have a continuous
range of possible thermal equilibrium states, which we qualitatively associate with the degree of
“hotness” or “coldness” of the system. For a given system, a change in the thermal equilibrium state
is characterized by changes in one or more of the physical properties of the system (such as the change
in volume for the blocks discussed in the previous section).

With each thermal equilibrium state of a system we assign a numerical value called the
temperature, as determined by some agreed-upon procedure. Once we have set up such a numerical
temperature scale for one “standard” system (say our copper block), then we can assign temperature
values to the thermal equilibrium states of any other system. To do this, we prepare our standard
system in a particular thermal equilibrium state with a particular temperature value. Then we assign
the same temperature value to any other system that is prepared so that it is in thermal equilibrium
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with the standard system. The concept of the temperature, or thermal equilibrium state of a system,
has great importance as a consequence of the following fundamental law:

If two systems A and B are each found to be in thermal equilibrium with a third system
C, then when the two systems A and B are brought into contact with each other, they
are themselves found to be in thermal equilibrium.

In other w})rds, tllj/ concept of temperature has a universal meaning. All systems at the same
temperature T are i fact in thermal equilibrium with each other. This result was so taken for granted
by scientists that it was not assigned a name until after the famous first and second laws of
thermodynamics were established. Since its truth lies at the very foundation of thermodynamics, it is
now often called the zeroth law of thermodynamics.

Problem 15.1.

(a) After the copper and aluminum blocks (referred to earlier in this section) came to thermal
equilibrium, the copper block was quickly placed next to an iron block, and no changes in either
block were observed. The iron block was then quickly moved into contact with the aluminum
block. What changes do you expect in these two blocks?

(b) If the temperature of the iron block is 30° on some scale, what were the temperatures of the
copper and aluminum blocks after they came to equilibrium?

Solution

{a) There would again be no changes, since, according to the zeroth law, the iron and aluminum are in
the same equilibrium state.

(b) Each was at 30°, since they both were in thermal equilibrium with the iron block.

Temperature Measurement—Temperature Scales and Thermometers

The procedures for setting up a temperature scale and measuring temperature were outlined in the
previous section. We will now actually set up a temperature scale.

First we single out a physical property of our standard system that varies with the thermal
equilibrium states in a well-defined and reproducible way. Such a physical property of a system is
called a thermometric property. Examples of thermometric properties are (1) the volume of a solid
or liquid held under constant external pressure, (2) the length of a rod under constant pressure, (3) the
resistance of a wire under constant pressure, (4) the pressure exerted by a constant volume of a
confined gas, and (5) the volume of a container of gas held at constant pressure.

For concreteness, let the standard system be a sample of mercury in a sealed glass container with
gas at nearly zero pressure (as in the mercury barometer), and choose volume as the thermometric
property. To make the change in volume easily visible, our glass container will consist of a hollow
bulb attached to a long, thin, hollow glass stem. When the mercury expands, it is forced up the thin
stem so that even small changes in volume are observable (Fig. 15-1).

Now we are ready to develop the most widely used temperature scale, the Celsius (7c) scale. We
wish to assign the number 7 = 0°C to the thermal equilibrium state (of our standard system) for
which ice and water are in equilibrium at atmospheric pressure (the ice point). Thus, we dip the glass
bulb into a large vat of ice and water in equilibrium, and when the mercury level stops changing, we
make an etch mark on the glass tube and label it 0°C. Similarly, we want #c = 100°C to represent the
state in which the liquid and vapor phases of water are in equilibrium at atmospheric pressure (the
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steam point or boiling point), so we take the glass bulb and dip it into a large vat of boiling water.
When the mercury level stops changing, we make another etch mark in the tube and label it 100°C.
We then divide the distance between the two etch marks into 100 equal marked intervals labeled in
1°C steps. We can also mark off intervals of the same size above 100° and below 0°. Fig. 15-2(a)
shows a schematic of system A with the Celsius scale.

The Fahrenheit (i) scale is defined in precisely the same way, except that the ice point and
steam point are defined (for historical reasons) as fr = 32°F and #z = 212°F, respectively, and the
distance between the two etch marks is divided into 180 equal marked intervals labeled in 1°F steps.
[Fig. 15-2(b)].

Problem 15.2. Find the conversion formula between the Fahrenheit and Celsius temperature scales.
Solution

From the definition of the two scales it is clear that a Celsius degree is larger than a Fahrenheit
degree, and that, in fact, a 1°C interval corresponds to a 1.8°F interval. Consider any Fahrenheit
temperature # and corresponding Celsius temperature ?c:. A quick calculation shows that we must have

tr—32=18(1c —0) = 1.8ﬁc (i)

Noting that 1.8 = 2, we get N
te =3(ty — 32) (if)
tp = 3¢ + 32 ' (iii)

Problem 15.3. Find the temperature at which both Celsius and Fahrenheit have the same numerical
value.
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Solution
Set #r = tc in Eq. (iii) of Problem 15.2. Then
tc =2tc +32 = —2ic =32 = 1c = —40°C =ty = —40°F

Problem 15.4. Change the following temperatures to Celsius: (a) 128°F; (b) 60°F; (c) 0°F;
(d) —459°F.

Solution
We substitute each value into Eq. (i) of Problem 15.2 to get
(a) tc=3(128 —32) =53.3°C. (b) tc =3(60—32) =15.6°C.
(¢) tc=3%(0-32)=-17.8°C. (d) 1c =3(—459 —32) = —273°C.

Our temperature-calibrated mercury system is called a thermometer because it can be used to
measure the temperature of any other object. The procedure is simple: Let the object and thermometer,
in contact, come to thermal equilibrium. Then, read their common temperature from the scale.

Problem 15.5. How can a thermometer measure the correct temperature of a system, since the
thermal equilibrium of the system itself will change as a consequence of contact with the
thermometer?

Solution

It is true that the thermometer records the temperature that corresponds to the final equilibrium state
of the system, which is not the state it was in before contact with the thermometer. Nonetheless, if the
thermometer is very small (in mass) compared to the system whose temperature is being measured, the
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change in the system will be negligible. Thus, for example, in using a mercury thermometer to measure
the temperature of a child, the drop in the child’s temperature due to contact with the cooler thermometer
1s negligible.

Problem 15.6. Suppose that a Celsius thermometer was created with alcohol (instead of mercury) as
the liquid.

(a) Would the alcohol and mercury thermometers read exactly the same at every temperature being
measured? Assume both thermometers are small in comparison with the objects whose
temperatures are being measured.

(b) What does your answer to (a) imply about measurements of temperature?
Solution

(a) No. Only the two reference temperatures, 0°C (the ice point) and 100°C (the steam point), will
definitely read the same. Only if the expansions of both liquids were perfectly linear with
temperature would the readings at values in between be identical.

(b) The definition of temperature depends on the particular physical properties of the “official”
thermometer. If the official thermometer were taken to be the mercury one, we could still use an
alcohol thermometer, but on it the etch marks for the 1° intervals would not be equally spaced but
would be calibrated against the readings of the official thermometer. As it turns out, the volumes of
most liquids and solids vary nearly linearly with temperature (far from their melting or boiling
points), so they do all give the same readings to a good approximation.

Problem 15.7. Develop a Celsius gas thermometer, choosing as the thermometric property the
pressure of the confined gas.

Solution

Figure 15-3(a) shows a gas confined to a fixed volume, with an open-tube manometer used to
measure the pressure of the gas inside. We can set up the Celsius scale by noting the pressures
corresponding to the ice point and the steam point, P; and P, [Fig. 15-3 () and (c)], respectively. Then
we can take the temperature of any system by noting the equilibrium pressure of the gas when our gas
thermometer is brought into close contact with that system. If the pressure is 40% of the way from P; to
P, we define the temperature as being 40% of the way from 0°C to 100°C, or 7c = 40°C. We thus have
a way of measuring Celsuis temperature with our gas thermometer. As in the cases of the alcohol
thermometer there is no guarantee that this thermometer will read the same values as the mercury
thermometer except at 0°C and 100°C.

As we have seen, our temperature scale is dependent on the particular material being used to
define it. It would be nice to be able to set up our scale in a way that is completely independent of the
nature of the substance of which the thermometer is made—a “universal” temperature scale. This
turns out to be possible for materials in the gaseous state. It was experimentally shgt‘t? that for all
gases confined to fixed volumes and at very low density (dilute), the pressure varies linearly with the
temperature, with great precision, over a much wider range of temperatures than for typical liquids.
This means that very-low-density gas thermometers, of the type described in the last problem, all read
the exact same temperature not only at 0°C and at 100°C but at all other temperatures as well. (For
that reason the constant-volume gas thermometer is often considered the “standard” against which
other thermometers are calibrated.) The graphs of pressure vs. temperature for all very-low-density
gases at fixed volume are thus straight lines, as long as temperature is not so low that the gas is near
the point of condensation to liquid or solid.
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If one extrapolates these straight lines until they intersect the temperature axis, a remarkable result
is observed. All the lines cut the axis at the same point, —273.15°C, no matter what gas is involved
[Fig. 15-4(a)]. On the basis of this result, one defines a new temperature scale 7, known as the
absolute or Kelvin temperature scale. A 1° interval—denoted 1 K—on this scale is the same size as
a 1° interval on the Celsius scale (1°C), but the zero point is shifted to —273.15°C. Thus

T = tc +273.15 (15.1)

Figure 15-4(b) shows that the pressure P of a low-density gas at constant volume is directly
proportional to its Kelvin temperature 7. Since pressure cannot be negative, one might surmise that
T = 0K was the lowest possible temperature in the universe—*“absolute zero.” In fact, this is the case.
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Problem 15.8. Find the Kelvin temperature corresponding to (a) fc = 0°C; (b) fc = 100°C;
(C) tF = 100°F.

Solution
(a) Using Eq. (15.1), we get T =0 + 273 = 273 K. (To three significant figures.)
() T=100+273 =373K.
(¢) We first convert from Fahrenheit to Celsius:
fc =3(tr —32) = 3(100 —32) =37.8°C
Next we convert to Kelvin: 7= 37.8 + 273.2 = 311 K.

Problem 15,9. The entire development of the Kelvin scale can be redone using the Fahrenheit scale
rather than the Celsius scale as the starting point. The resulting scale is called the Rankine scale, Tx.
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(a) Find the Fahrenheit temperature that corresponds to zero on the Rankine scale.
(b) Find the formula that relates the Rankine and Fahrenheit scales.
Solution
(a) This Fahrenheit temperature must correspond to ¢ = —273.15°C. Then
tp = tc +32 = —459.67°F

(b) Since the zero of the Rankine scale corresponds to g = —459.67 °F and the degree size is the same
as the Fahrenheit degree, we must have T = f¢ + 459.67.

Problem 15.10. In setting up the Celsius and Fahrenheit temperature scales, we needed two
reference points, which we took to be the ice point and the steam point. Show that the Kelvin scale can
be completely defined with only one reference point.

Solution

We use a constant-volume gas thermometer to establish the scale, and we recall that P is
proportional to T for such a thermometer. Let P* be the pressure reading of the thermometer at some
reference temperature 7%, and let P be the reading at any other temperature 7. We must have

F Y T*

Thus one reference temperature T* allows us to use the thermometer to determine any temperature 7.

The reference temperature in Problem 15.10, in principle, could be chosen as either the ice point
or the steam point, but in fact it is not. Instead, it is chosen as the unique equilibrium state of water,
called the triple point, the temperature at which all three phases of water—solid, liquid, and vapor—
coexist. The temperature of the triple point is just slightly above the temperature of the ice point and
corresponds on the Celsius scale to 7 = 0.01°C. For this reason the value of 7% (Problem 15.10) is
defined to be 273.16 K, assuring that the newly defined scale will be essentially identical to the earlier
version. Then

2
T = (273.16K) (15.3)

where P* is the pressure reading of our gas thermometer at the triple point of water, and P is the
pressure reading at the temperature 7.

Problem 15.11.

a) A constant-volume gas thermometer is immersed in water at the triple point, and the pressure is
g A ple p Jy
measured as P* = 2.5 x 10° Pa. The thermometer is next placed in an oven cavity, where its
pressure is found to be 3.0 x 10* Pa. What is the Kelvin temperature of the oven?

(b) What would be the pressure reading in the same oven for a gas thermometer whose pressure at
the triple point was 1.0kPa?

Solution

(@) By (I5.3),

30
T= ﬁ(273 K) =3280 K
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(b) By Problem 15.10, the pressures of both thermometers must increase by the factor 30/2.5 = 12.
The pressure of the new thermometer must then be 12(1.0kPa) = 12 kPa.

Linear and Volume Expansivity

Among the most common thermometric properties of matter are the linear dimensions, surface
area, and volume of solids, and the volume of liquids, all under constant pressure. If we have a rod of
length L at a given absolute temperature and we increase the temperature by a small amount A7, we
find that the length of the rod increases by an amount AL that is proportional to the original length L
and to the temperature increase AT:

AL = al AT (15.4)

The proportionality constant o is called the coefficient of linear expansion; it depends on the material
of which the rod is made. The units of « are those of reciprocal temperature, as can be seen from
(15.4). Note that AT = Atc, since the degree sizes are the same; it is common to give o in °C~!. For
most solids « will vary only slightly with temperature and pressure, so long as the solid is not close to
the melting temperature. Equation (/5.4) holds reasonably well, even when AT is substantial, as long
as AL/L < 1. Values of « for selected solids are given in Table 15.1.

Table 15.1. Linear Expansion

Solid 10° x o, °C~!
Aluminum 2.55
Brass 1.93
Copper 1.67
Glass (Pyrex) 0.33
Iron (steel) 1.20
Platinum 0.90
Silver 1.90
Zinc 3.20

Problem 15.12. An aluminum rod 3.0 m long is heated uniformly until its temperature rises by
20°C. Find the fractional change in the length of the rod.

Solution \
By (/5.4) and Table 15.1, =
AL

= @AT = (255 10-3°C1)(20°C) = 0.00051

Problem 15.13. A railroad track is made of steel rails which are each 30 m long. If each rail can
expand freely, how much space should be left between successive rails to avoid buckling? Assume
that the maximum increase in temperature due to heating from the sun is 60°C.
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Solufion
The space should be sufficient to accommodate the maximum AL of each rail due to heating.

AL = (1.2 x 1075°C™")(30 m)(60°C) = 21.6 mm

Problem 15.14. A homogencous material will have the same expansivity properties in every
direction. Hence such an object changes its overall size upon heating, but not its shape.

(a) Given this fact, find the new diameter of a solid brass sphere of radius 0.9535 m when its
temperature rises 200°C.

(b) 1f the sphere of (a) were hollow instead, with inner diameter 0.8535 m, what would be the new
inside and outside diameters for the same temperature rise?

(¢) In (b), by how much does the thickness of the spherical shell increase?
Solution
(@) Equation (15.4) applies to any diameter:
Ad = (1.93 x 107°C™")(0.9535 m)(200°C) = 0.0037 m
For a new diameter of 0.9572 m.

(b) The outer diameter still changes by 3.7 mm. Since all linear dimensions of the hollow sphere must
expand in proportion, the inner diameter changes by

Ad; = (1.93 x 10-5°C")(0.8535 m)(200°C) = 0.0033 m

(¢) We could reapply Eq. (15.4) to the 50-mm thickness of the brass shell. Instead we can just take the
difference between the known expansions of the outer and inner radii, to obtain a

1(3.7mm — 3.3 mm) = 0.2 mm

increase in shell thickness.

Note. The hole (any hole) expands upon heating just like the homogeneous material itself.

Problem 15.15. A steel hoop at tc = 20°C has inner diameter 100.005 c¢m. The hoop is to be placed
over the rim of a wheel that is 100.044 cm in diameter. To what temperature f. should the hoop be
heated to just fit over the wheel?

Solution

The inner diameter of the hoop must be increased by 0.039 cm. Then, from Eg. (I5.4),
0.039 cm = (1.2 X 107°°C™") (100.005 cm) AT Solving for AT, we have AT =32.5°C, and 1 =
52.5°C.

Problem 15.16. A steel sphere of diameter 4.0025 cm is to be passed through a brass loop of inner
diameter 4.0012 cm. If the steel and brass are heated together, by how many degrees must they be
heated for the sphere to just fit through the loop? :

Solution

Since the sphere starts off with a diameter 0.0013 cm larger than the loops, we must have
tpdioop AT = ttsdspn AT -+ 0.0013 cm
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The diameters are given, and the expansion coefficients are available from Table 15.1.
(1.93 x 107°C™1)(4.00 cm) AT = (1.2 x 1073°C™1)(4.00 cm) AT +0.0013 cm

(Note that we approximated both diameters as 4.00 cm in the above expression, since these are to be
multiplied by extremely small numbers, and the last decimal places of the diameters will contribute
negligibly). Solving, we get AT = 44.5°C.

Problem 15.17. Show that the change in volume of a homogeneous rectangular solid, due to a
temperature rise A7, can be expressed as
AV = BV AT
where f§ = 3o is the coefficient of volume expansion of the solid.
Solution

If the dimensions of the solid are originally L;, L,, and L, then after heating, the new dimensions
are

Ly =Ly +oaL AT = L;(1 + o AT) Ly = L(1 +aAT) Ly = L3(1 + o AT)
The new volume is then
V' = LILLY = LiLoLs(1 + o AT)? (i)
We expand the term in parentheses, getting
(1 +aAT)’=14 30 AT 4 3(« AT+ (2 AT) (ii)

Recalling that a AT is Very small, even for reasonably large values of A7, we can ignore the last two
terms to get (1 + ¢ AT ) ~ 14 3zAT. Substltutlng into Eq. (i) we get

= V(1 +3aAT) or AV =V -V =0B)VAT=BVAT with p=3a

Problem 15.18. Assume that the rectangular solid of the previous problem is made of aluminum and
has dimensions L; = 30 cm, L, = 20 ¢m, and L3 = 50 cm. Find (@) the volume expansivity of the
rectangle; (b) the change in volume due to a AT of 40°C.

Solution

(@) The volume expansivity of aluminum can be obtainéd from Table 15.1: f=3a=
7.65 X 107°°C~!

(b) V=LL,L; = 30,000 cm® = AV = (7.65 X 10‘5°W30,000 cm®) (40°C) = 91.8 cnf’.

The notion of linear expansion does not apply to liquids. Nevertheless, liquid volumes expand in
accordance with the same law as for solids:

AV = BV AT (15.5)

where 8 is now the volume expansivity of the liquid in question. Some values of f for liquids are
shown in Table 15.2. Note that liquids generally have larger B values than solids.

Problem 15 19. The volume of the Pyrex glass bulb of a large mercury thermometer is
V = 0.30 cm’. The cross-sectional area of the inside of the stem is 4 = 0.0020 cm?. If the temperature
of the bulb increases by 30°C, what is the increase A/ in the height of mercury in the stem?
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Table 15.2. Volume Expansion

Liquid 10° x B, °C!

Alcohol 110
Glycerine 53
Mercury 18.2
Turpentine 94
Water 30

Solution

We note that as the temperature increases, the volume of mercury increases, forcing mercury up the
tube. However, the volume of the glass bulb also increases, and this must be taken into account. We
ignore the expansion of the tiny amount of mercury already in the stem, as well as the slight change in
cross section of the stem itself. The net volume that is forced up the stem, 4 Ak, is then the difference
between the increase in volume of the mercury and the glass bulb:

AAR = AViere — AVouts = (Brere — Bytass) VAT

From Tables 15.1 and 15.2, we get (18.2 X 107%°C71=1.0 X 107°°C™Y (0.30 cm®) (30°C) =
0.00155 cm®. We must have AhA = AV, = Ah = AV/4 = 0.00155 cm® / 0.0020 cm® = 0.775 cm.

It should be noted that for liquids near the melting point, (/5.5) can be quite a poor
approximation. In fact, in some cases, f§ changes rapidly near the melting point; it can even change
sign. This occurs for those few liquids that expand upon freezing, such as water. With decreasing
temperature, the volume of water decreases until about 4°C, below which the volume increases until
solidification at 0°C. The fact that water expands upon freezing explains why ice floats, since the ice
is less dense than the water.

15.3 THERMAL ENERGY; HEAT CONSTANTS

Thermal Energy and Heat

As we have seen, when two systems in mechanical and chemical equilibrium, but at different
temperatures, are brought into contact, changes in both systems take place until they reach a common
temperature. Early scientists believed that some invisible and weightless substance, which they called
caloric, flows from a hotter to a cooler object until both objects reach thermal equilibrium. Thanks to
the work of Joule and others in the first half of the nineteenth century, it became clear that it is not a
substance but thermal energy that is transferred between two macroscopic systems in contact.

At the interface between the two systems, the more energetic atoms and molecules of the hotter
system interact with their less energetic counterparts in the cooler system. The net result of these
interactions is a transfer of energy to the atoms and molecules of the cooler system. Such transfer of
energy is called heat.

Viewed macroscopically, heat is a nonmechanical transfer of energy, since the interacting systems
are in mechanical equilibrium. Heat, then, is the counterpart of work, which (Sec. 6.6) is the
mechanical transfer of energy from one system to another. Heat is actually the statistical “summing
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up” of the mechanical work done by the random interactions of the individual atoms and molecules of
our two systems. Like work, heat is not something that resides in a system but is the thermal energy
transfer from one system to another. The related quantity that resides in a system is “disorganized”
internal energy, or thermal energy, which is due to the random motion and jiggling of the myriad
atoms and molecules making up our macroscopic system.

Problem 15.20. The three common forms of internal energy are mechanical, chemical, and thermal.
Figure 15-5 shows a system consisting of a container of hydrogen and oxygen gases and a long
spiral spring. The container is slowly oscillating at the end of the spring. The entire system is at
temperature T.

(@) Describe the various internal energies of the system.

(b) A spark causes the oxygen and hydrogen to explode, but the container doesn’t burst. Is this
process quasistatic? If not, explain why.

() Ifno energy can escape from the system, what changes in the internal energy distribution would
you expect after the system comes to internal equilibrium?

H, + 0,

Fig. 15-5

Solution

(@) This system possesses all three forms of internal energy. The mechanical energy is the sum of the
kinetic energy, the gravitational potential energy, and the spring potential energy associated with
the oscillation. The chemical energy is the potential energy of forces within the oxygen and
hydrogen molecules that is available to be released in their combination into water molecules. The
thermal energy is that associated with the jiggling molecules making up the gas mixture, the
container, and the spring, at their common temperature 7.

(b) Prior to the explosion the system is quasistatic: the slow oscillations do not cause turbulence in the
gas, which has a definite pressure associated with it. During and immediately after the explosion
the system is, of course, not quasistatic. There is no common pressure in all parts of the container
during the explosion, and the same is true for temperature. After the explosion, the contents of the
container (water and any leftover gases) quickly reach a common pressure and temperature, but it
takes a certain amount of time for thermal energy to travel from the gas and container to the spring,
thereby bringing the entire system into equilibrium.
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(c) The chemical potential energy will have been largely converted to thermal energy, as evidenced by
the new higher temperature of the container and the spring. If the explosion occurred
symmetrically within the container, no net force was exerted by the exploding gases on the
container and the mechanical energy will remain unchanged. In an asymmetric explosion,
however, some of the energy of the explosion could appear as increased mechanical energy of the
system.

Heat Units

The historical unit of heat in the metric system is the calorie (cal), which originally was defined as
the “amount of heat”—i.e., the amount of thermal energy in transit—necessary (at atmospheric
“pressure and a particular starting temperature) to raise the temperature of 1 gram of water 1°C. In the
E{:lish system the corresponding unit is the British thermal unit (Btu), which is the amount of heat
necessary to raise 11b of water 1°F. The conversion is 1 Btu =252 cal. The fact that several
definitions of the calorie have been in use, differing one from another in the fourth decimal place, may
lead to some confusion. These calories are given separate labels and are now all defined in terms of
the SI unit of energy, the joule. In this book we will employ only the “thermochemical” calorie, where

1 cal =4.184 J.

Note. The common food calorie is really 1000 heat calories, as defined above: 1 food
calorie = 1 kcal or 4184 J.

Problem 15.21.

(a) A bunsen burner flame has been adjusted so that it generates 30 cal/s. Assuming that all this heat
enters a container of water, what is the change, in J, of the internal energy of the container and
water after 3.0 min?

(b) If instead the same change in internal energy were to take place through the work done on the
water by a rotating paddle driven by a falling 100-kg mass (Fig. 15-6), through what distance
would the mass have to fall? Assume that the mass falls at constant speed and that the pulley
systems are frictionless.

100 kg




388 THERMODYNAMICS I. TEMPERATURE AND HEAT [CHAP. 15

Solution

(@) The increase in the internal energy of the system is just (30 cal/s) (180 s) = 5400 cal. Multiplying
by 4.184 J/cal, we get 22,600 I.

(b) The falling mass must lose 22,600 J of gravitational potential energy. Thus, mgh =
22,600 J = (100 kg) (9.8 m/s*)h = 22,600 J = A = 23 m.

Specific Heats and Heat Capacities

The relationship between temperature and heat was already a major topic of investigation in the
time of the caloric hypothesis. It was noted that for each different substance a characteristic amount of
heat had to flow into a unit mass of the substance to produce a 1° rise in temperature. This
characteristic property was quantified in the concept of specific heat. If AQ is the amount of heat
entering a mass m of a pure substance and if the consequent temperature rise is AT] the specific heat ¢
of the substance is given by

o= B9

mAT

The working SI unit of specific heat is the kJ/(kg - K), in which °C may be substituted for K.

Other commonly used metric units are cal/(g - °C) = kcal/(kg - °C), J/(g - °C) = kJ/(kg - °C), and
Jikg - °C) = 107 kl/(kg - °C).

Clearly a substance with a high specific heat requires more heat energy to raise its temperature by
a given amount than one with a low specific heat. The heat capacity C of our sample of material is the
total amount of heat needed to produce a degree rise in temperature: C = AQ/AT. From Eq. (15.6),

C=mec (15.7)

Unlike heat capacity, which depends on the mass of the sample, specific heat is an intrinsic
property. Nonetheless, it does depend to a slight degree on two other intrinsic properties, the material’s
temperature and pressure. For many substances the specific heat stays constant over moderate ranges
of these variables. For water at atmospheric pressure, for example, the specific heat varies from about
4210 J/(kg - K) at tc = 0°C down to about 4180 J/(kg - K) at z- = 30°C and back up to about
4210 J/(kg - K) at tc = 100°C. It thus varies by less than 1% over the full 100°C temperature range
of water. _

The specific heat also depends on the manner in which thermal energy is transferred to the
substance. For example, the specific heat will be different depending on whether pressure or volume is
held fixed during the heating process. As a practical matter, it is much easier to heat liquids and solids
at constant pressure than at constant volume. Table 15.3 gives the specific heats of some solids and
liquids under constant atmospheric pressure: the values are valid over a fairly wide range of
temperatures. For specific heats of gases, see the next chapter. ‘

Calorimetry is the experimental measurement of specific heats and other heat constants. Tt is
based on the fact that, for systems in mechanical and chemical equilibrium, the thermal energy lost by
one system must, by conservation of energy, equal the thermal energy gained by the other systems it is
in contact with. Consider an isolated system that is composed of two subsystems in close “thermal”
contact, meaning that heat can easily transfer from one subsystem to the other. If O, is the magnitude
of heat transferring out of the first subsystem and Q;, is the magnitude of heat entering the second
subsystem, then Qo = O;,,. In a typical experimental situation, an insulated container holding water
makes up the second subsystem, or calorimeter, while a sample of the substance whose specific heat
is to be measured composes the first subsystem. The sample is inserted into the calorimeter and the
two come to thermal equilibrium.

or  AQ=mcAT (15.6)



CHAP 15] THERMODYNAMICS I: TEMPERATURE AND HEAT 389

Table 15.3. Specific Heats at Atmospheric Pressure

Specific Heat

Substance keal/(kg - °C) kJ/(kg - °C)
Solids:
Aluminum 0.22 0.92
Brass 0.090 0.377
Copper 0.093 0.389
Gold 0.031 0.130
Ice (near 0°C) 0.50 2.09
Iron (steel) 0.11 0.46
Lead 0.031 0.130
- Platinum 0.032 0.134
B Zine 0.092 0.385
Liquids:
Alcohol 0.55 2.30
Glycerine 0.58 2.43
Mercury 0.33 1.38
Turpentine 0.42 1.76
Water 1.00 4.184

Problem 15.22. A lead brick, of mass m; = 3.0 kg and at a temperature of #; = 300°C, is dropped
into an insulated copper vessel of mass m.= 1.5 kg that contains m,, = 2.0 kg of water; the
calorimeter temperature is #, = 20°C. If the final temperature at equilibrium is ¢ = 31.7°C, find the
specific heat of lead.

Solution
For the lead,
Qout = mici(t; — t) = (3.0 kg)¢;(300°C — 31.7°C)
For the calorimeter, ’
Qin = mycy(t — 1) + mece(t — to)
= (2.0 kg)[4.184 kJ/(kg - °C)](31.7°C — 20°C) + (1.5 kg)[0.389 kJ/ (kg -°C)](31.7°C ~ 20°C)
Equating Oy, and Qy,, and solving for ¢;, we get ¢; = 0.130 kJ/(kg - °C), which checks with Table 15.3.

Note. In Qg we subtract the final temperature from the hot temperature, while in Qi, we
subtract the cold temperature from the final temperature, since both O’ are defined to be
positive.

Problem 15.23. An aluminum block, of mass 200 g and a temperature of 400°C, is dropped into an
aluminum calorimeter of mass 1.0 kg filled with 100 g of water at a temperature of 5.0°C. Find the
temperature when equilibrium is reached. ’
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Solution ..
Using the specific heats from Table 15.3, we have

Oout = Oin = (0.200 kg)[0.22 keal/ (kg - °C)](400°C — #5)
= (0.100 kg)[1.00 keal/(kg - °C)](# — 5.0°C) + (1.00 kg)[0.22 keal/(kg - °C)](& — 5.0°C)

We bring all terms involving # to the right and all numerical terms to the left, obtaining
19.2 = 0364t = tp = 52.7°C.

Heat Constants

All substances have a solid, a liquid, and a vapor phase. For a solid substance under a fixed
pressure, there is a definite temperature at which it will become liquid (melt) called the melting point.
At the melting point one must add a definite amount of heat, called the heat of fusion L, to melt each
unit mass of the substance. This process is reversible: if one extracts a like amount of heat from the
liquid at the melting point (now renamed the fusion peint), the liquid will become solid again.

Likewise, for a liquid under fixed pressure, there is a definite temperature, called the boiling
point, at which the liquid will convert to vapor. Again, one must add a definite amount of heat, called
the heat of vaporization L,, to vaporize each unit mass of the substance at the boiling point. This
process, too, is reversible, with the boiling point becoming the liquefaction point.

Melting and boiling points, and their associated heat constants, vary with pressure. The values
given in Table 15.4 reflect normal atmospheric pressure.

Table 15.4. Heat Constants at Normal Atmospheric Pressure

Substance | Melting Point, °C L kJ/kg | Boiling Point, °C L, kJ/kg
Hydrogen —259 58.6 —253 452
Oxygen =219 13.8 —183 213

Alcohol —114 104. 78 854
Mercury -39 11.8 357 272
Water 0 335. ‘ 100 _ 2256
Lead 327 24.6 1750 871

Zinc 420 118.

Gold 1064 64.5 2660 1578

A third phase transition—solid to vapor, or sublimation—must also be considered. For each
substance there is a pressure below which there can be no liquid phase. Below that pressure, adding
heat to a solid will lead directly to the vapor state. Again, for each fixed pressure, there is a definite
temperature, or sublimation point, at which sublimation occurs, and a definite amount of heat, called
the heat of sublimation L, must be added to each unit mass of solid at that temperature to convert it to
vapor. Again, the process is reversible.

A helpful means of keeping track of phase changes is a pressure vs. temperature, or P-T,
diagram. For a pure substance (e.g., carbon dioxide, methane, mercury, water, or aluminum) the
diagram will resemble Fig. 15-7(a) or (b). The three smooth curves separate the solid, liquid, and
vapor domains. At any pressure and temperature to the left of the sublimation and fusion curves the
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Fig. 15-7

substance is in the solid phase. Similarly, any point below the sublimation and vaporization curves lies
in the vapor domain. The liquid phase corresponds to the region between the fusion and vaporization
curves above the triple point. For any given pressure P there is a corresponding temperature on the
fusion curve, which is the melting point or fusion point for that pressure. For the same pressure there
is also a corresponding (higher) temperature on the vaporization curve, and this is the boiling point or
liquefaction point for that pressure. The graph clearly shows how the values of the melting and boiling
points vary with pressure. Below the triple point, which is clearly the single point at which vapor,
liquid, and solid coexist, we have only sublimation.

The P-T diagram (Fig. 15-7) also allows us to visualize the effects of heating. If we start at a given
pressure, say P, and at T = 0K, and we slowly add heat to the substance while holding the pressure
constant, the solid’s temperature will rise until it reaches the melting point on the fusion curve. The
temperature will stay constant throughout the melting process. After all the solid has been converted
to liquid, the temperature begins to rise again, and we slowly move along the dashed line until the
vaporization curve is reached. At this point the liquid starts turning into vapor; the temperature
remains at the boiling point until the vaporization is complete. After that the temperature continues to
rise.
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It should be noted that while the entire melting or vaporization process seems to take place at a
single point on the P vs. T graph, in fact the volume of the system is changing during the process. The
volume of the liquid at a given P and T on the fusion curve is different than the corresponding volume
of the solid. This is even more dramatic for liquid and vapor on the vaporization curve.

Thus, for example, during the vaporization process, the volume changes from that of 100% liquid
until it becomes that of 100% vapor. We must keep adding heat until all the liquid has become
completely vapor. The same analysis is true of solid and liquid at a point on the fusion curve.

As shown above, crossing from one side of the vaporization curve to the other corresponds to a
major change in the volume of the substance. As we repeat this process at higher and higher constant
pressures, however, the difference in the volume between 100% liquid and 100% vapor decreases. At
the pressure of the critical point (see Fig. 15-7) this difference in volume completely disappears, and
the difference between liquid and vapor loses its meaning. Figure 15-8 illustrates the crossing of the
vaporization curve at different fixed pressures (and corresponding temperatures) ranging from the
triple-point pressure P5 to the critical pressure P, in a graph of P vs. ¥ (pressure vs. volume). The
dotted line on the left, called the liquid saturation curve, corresponds to points of 100% liquid, on
the verge of starting to vaporize, while the dotted line on the right, called the vapor saturation curve,
corresponds to points where the substance has just become 100% vapor. The horizontal dashed lines
represent the changing volume for changing relative composition of the liquid-vapor mixtures at the
given sample pressures and temperatures. Note how the volume differences between 100% liquid and
100% vapor decreases toward the critical point.
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Problem 15.24. The triple-point pressure of water is P3 = 0.006P,,, while the critical pressure is
P =221P,.

(@) What is the requirement for the sublimation of water?
(b) What is the difference between the densities of liquid and vapor water at the critical point?

(c) Are these phenomena observable in everyday life?
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Solution

(a¢) One must reduce the pressure to below 0.006P,y,; otherwise ice first melts into a liquid phase and
then vaporizes.

(b) Zero (compare the volumes of a unit mass of liquid and a unit mass of vapor).

(¢) Ice must be present in a highly evacuated chamber to reproduce the conditions for the triple point
or for sublimation. Similarly, one would have to have water under extreme pressure to reproduce
the conditions at the critical point or above. Thus these phenomena are not part of our normal
experience.

Problem 15.25.

(@) Suppose the volume V;; in Fig. 15-7 is 30.0 mL, while that of V, 5 is 200 mL. What fraction, x,
of the mass of the liquid has vaporized (at pressure Ps) when the volume is Vi =100 mL?

(b) 1If the heat of vaporization of this fictitious substance is 600 kJ/kg and the mass is 80 g, how
much heat must be added to the 30.0 mL of liquid to reach the volume 100 mL?

Solution
(a) Vi =100 mL = (1 —x)(30.0 mL) + x(200 mL) or x=041
(b) From part (a), the amount of liquid vaporized is (0.41) (80 g) = 32.8 g. Then,
Heat = (600 kJ/kg)(0.0328 kg) = 19.7 kJ
N

We now apply the techniques of calorimetry to heats of fusion, vaporization, and sublimation.

Problem 15.26. A 0.500-kg block of ice, initially at —50°C, is placed in a large pot that is open to
the atmosphere. The pot is heated at a constant rate of 20 W; all the heat enters the ice.

(@) Describe qualitatively the processes that occur as the ice is heated, from the start until it has
turned into water vapor.

(b) How long does it take to raise the temperature of the ice to 0°C?

(¢) How long does it take to completely melt the block at 0°C?

(d) How long does it take to raise the temperature of the liquid water from 0°C to 100°C?

(e) How long does it take to vaporize the water at 100°C?
Solution

(@) The ice will first warm up until it reaches 0°C, the melting point at atmospheric pressure. At that
point the ice will start to melt, and the temperature will remain at 0°C all through the melting
process. After all the ice has melted, we have water at 0°C, which will now absorb the incoming
heat and rise steadily in temperature until it reaches the boiling point at 100°C. At that point it will
start to boil while it stays at 100°C, until all the liquid has turned to vapor.

(b) From Table 15.3 we see that the specific heat of ice is 2090 J/(kg - °C). Then, the heat necessary to
raise the temperature of the ice to 0°C is @ = (0.50 kg) [2090 J/(kg - °C)] (50°C) = 52.3 kI. Ata
rate of 20 J/s this will take 2615 s = 43.6 min.

(c) The heat of fusion of ice is 335 kJ/kg, so the heat necessary to melt the ice is O = (0.50 kg)
(335 kJ/kg) = 167.5 kJ. The time is then 8375 s = 140 min.
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(d) The specific heat of water is 4.184 k)/(kg - °C), so the heat to raise the water from 0°C to 100°C is
(0.50kg)[4.184 kJ/(kg - °C)](100°C) = 209 kJ
and the time it takes is 10,500 s = 174 min.
(e) The heat of vaporization of water is 2256 kJ/kg, so the heat to vaporize all the water is
(0.50 kg)(2256 kI /kg) = 1128 kJ
and the time taken is 56,400 s = 940 min.

Problem 15.27. A calorimeter has a shell of negligible heat capacity and contains 0.5 kg of ice and
0.5 kg of water in equilibrium. A 2.0-kg block of steel at 500°C is placed in the calorimeter, and the
system is allowed to come to equilibrium.

(@) What is the final equilibrium temperature #y?

(b) What would have happened if the mass of the steel block were 0.50 kg, all else being the same?
Solution
(a) ‘For the steel,
Oout = mycs(ts — 19) = (2.0 kg)[0.46 kI /(kg -°C)] (500°C — 1)
For the calorimeter,
O = MiceL; + (mice + my)cu(to — 0°C) = (0.50 kg)(335 kJ/kg) + (1.0 kg)(4.184 kI /kg - °C)to

Setting Qour = Qi and solving for 3, we get ¢y = 57.3°C.
[In equating O,,,; and @, we assume that O, is sufficient to melt all the ice. If that had not been the
case, we would have found that £, < 0°C—which is absurd, because the equilibrium temperature has to
~ lie between the highest and lowest initial temperature in the system. There is amore direct way to check
whether all the ice melts or not; see (b).] a\'

(b) Let us first check to see if all the ice melts. The maximum value of Qout is the heat necessary to
drop the temperature to #, = 0°C. Thus,
Oout < (0.50 kg)[0.46 kJ/(kg - °C)] (500°C — 0°C) = 115KkJ
The amount of heat needed to melt all the ice is Omerr = (0.50 kg) (335 kJ/kg) = 164 kJ. Clearly,

not all the ice melts. We can easily find the amount of ice that does melt, since we now know that
the final temperature is indeed 0°C and that Q.. = 115 kJ. Thus,

(335KI/kglx=115k]  or x=034kg

Problem 15.28. How many grams of live steam at atmospheric pressure must be injected into a
calorimeter initially containing 100 g of ice and 200 g of water in equilibrium if the final temperature
is to be 50°C? Ignore the heat capacity of the vessel.

Solution

Qout = msLy + msCy (£ — to)

— my(2256 kI /kg) + my[4.184 KJ/ (kg - °C)] (100°C — 50°C) = m,(2465 kJ /kg)
Oin = miLs + (m; + my)cy(ty — 0°C)
(0.10 kg)(335 kJ/kg) + (0.30 kg)[4.184 kJ/ (kg - °C)] (50°C — 0°C) = 96.3 kJ

Equating O, and Oy, we get m; = 0.039 kg = 39 g.
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Evaporation and Cooling

It has been seen that, for a given pressure, boiling will take place at a definite temperature.
Boiling, which occurs within the bulk of the liquid, is a different phenomenon from evaporation,
which takes place only at the surface of a liquid in contact with a gas at a given pressure. At
temperatures well below the boiling point, molecules from the liquid that are particularly energetic can
break free and rise above the liquid to form a vapor. If this vapor is trapped above the liquid surface,
then eventually equilibrium is established, with as many vapor molecules reentering the liquid as
leaving. But if the liquid is open to the atmosphere, the evaporation process continues unabated. The
evaporating molecules carry off thermal energy with them—on average the amount of energy per unit
mass is the same order of magnitude as the heat of vaporization for boiling. Thus the evaporation
process removes heat from the liquid, cooling it and anything in contact with it.

Problems for Review and Mind Stretching

Problem 15.29.

(a) Find the rehtibn@ip between the Kelvin and Rankine temperature scales, and find the triple-
point temperature of water in the Rankine scale.

() Convert all the values of specific heats in Table 15.3 to units of Btu/(Ib -°F).
Solution

(@) The two absolute temperatures are each directly proportional to pressure and hence directly
proportional to each other. We know that the kelvin (or Celsius degree) is nine-fifths as large as the
Rankine (or Fahrenheit) degree. It follows that T = %T . From this for the triple point of water, we
get Trz = 2(273.16) = 491.69 R.

(b) Recalling that the definition of the Btu is the amount of heat necessary to raise 1 Ib of water 1°F,
we have ¢,, = 1.0 Btu/(Ib « °F). This is numerically identical to the specific heat of water in kcal/
(kg - °C) [or cal/(g - °C)]: ¢, = 1.0 keal/(kg - °C). This implies that all other specific heats must
also have the same numerical values in both systems, and the first column of Table 15.3 already
gives the correct values of the specific heats in Btu/(Ib - °F).

Problem 15.30. A flat plate of brass has area 4 = 0.4500 m?. The temperature is raised by 100°C.
Find the new area of the plate.

Solution

Just as for volume, the area expansion is related simply to the linear expansion. If we repeat the
analysis found in Problem 15.17 for a flat rectangle of sides L; and L, we can quickly conclude that the
area expansivity is just 2a. Then, for our brass plate,

Ad = 204 AT = 2(1.93 x 10~3°C1)(100°C) = 0.0039 m?

The new area is A’ = 4 + A4 = 0.4500 + 0.0039 = 0.4539 m>.

Problem 15.31. An aluminum pot of volume 600 cm?’ is filled to the top with water at 20°C. The
pot and contents are heated up to 60°C. What volume of water spills over the top of the pot during the
heating?
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Solution

The volume of the pot increases, but the volume of the water increases faster. The difference in the
two volume increases, A¥] is the volume of water that overflows. Recalling that the water and pot occupy
the same initial volume ¥, we have -

AV =B, VAt — BV At
= (30 X 107°°C™")(600 em®)(40°C) — (7.65 x 10-3°C~1)(600 cm?)(40°C) = 5.36 cm’

Problem 15.32. The heat of combustion of a fuel is defined as the amount of chemical potential
energy converted to thermal energy for each kilogram of the fuel that burns up (completely combines
with oxygen). To find the heat of combustion of gasoline, 2.0 g of gasoline is completely burned in an
under-chamber of a 1.0-kg copper calorimeter containing 500 g of water initially at 20°C. The setup
is such that all the energy from the combustion enters the calorimeter and contents as thermal energy.
The final equilibrium temperature of the calorimeter is found to be 57°C.

(a) What is the heat of combustion A, of the gasoline?

(b) 1If the energy content of 1.0 g of peanut butter is 12 kcal = 12 food calories, how does this
compare to the combustion energy of gasoline?

Solution
(@) The amount of heat entering the calorimeter is
Omn = mycy At + mec, At
= (0.500 kg)[4184J/(kg - °C)] (37°C) + (1.00 kg)[3897/(kg - °C)] (37°C) = 91,8007
Then mgh, = 91,800 J = (0.0020 kg)h, = 91,800 J = h, = 45,900 kJ /kg.

() We recall that 1 food calorie = 1 kcal = 4184 J. Dividing A, by-4184 J/food calorie yields
10,970 food calories’kg, or approximately 11 food calories\/%. The peanut butter, upon digestion,
yields more energy per gram than the gasoline! ’

Problem 15.33. If a weighted wire rests on a block of ice, as shown in Fig. 15-9, the wire will
slowly descend through the ice. When the wire has sliced completely through the ice, however, the
block is still in one piece. Explain this example of regelation (refreezing). -

Wire

Hanging weight Hanging weight

|5 4

Ice

Fig. 15-9
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Solution

The wire exerts great pressure on the ice immediately beneath it. Since the temperature of the ice is
relatively constant, we can visualize what happens by following a vertical path in Fig. 15-7(b). As the
pressure increases we move vertically upward on the graph from the solid region until we reach the
fusion curve. If the pressure increases further, we are forced into the liquid region, which means that the
ice melts. As the ice in the high-pressure region just below the wire melts, the wire displaces the liquid
which rises above the wire. The liquid is now at lower pressure and resolidifies. The heat removed from
the liquid then contributes to melting the next layer of ice under the wire, and the process repeats as the
wire slices downward. At the end we are left with a solid block of ice.

Supplementary Problems

Problem 15.34. Using Table 15.4, calculate the melting and boiling points of oxygen and mercury on (a) the
Kelvin scale, (b) the Fahrenheit scale.

Ans.  (a) oxygen: 54 K and 90 K, mercury: 234 K and 630 K; () oxygen —362°F, —297°F, ‘k
jmercury: —38.2°F, 675°F

Problem 15.35. A metal rod of length 3.000 m is uniformly heated so that its temperature rises 300°C. The
new length is found to be 3.015 m. Find the coefficient of linear expansion. What is a likely candidate for the
metal of which the rod is made?

Ans. 1.67 X 107°°C7Y; copper

Problem 15.36. A steel rod of length L =2.0 m and cross-sectional area 4 = 200 mm? is held rigidly
between two walls. Heating raises the rod’s temperature by Az = 300°C.

(@) What would be the increase in length of the steel if it were free to expand?

(b) Ifthe walls hold the steel rigidly to its original length, find an expression for the force that must be exerted
by each wall on the rod. [Hint: Recall the definition of Young’s modulus (Sec. 11.1).]

(¢) Tind the numerical value for the force of part (b). (The Young’s modulus for steel is ¥ = 1.98 X 10'! Pa.)
Ans. (a) 7.2 mm; (b) F = aYAAt; (¢) 143 kN

Problem 15.37. An aluminum hoop of inner diameter 1.0024 m is to be fitted over a steel disk of diameter
1.0045 m. Both the disk and the hoop are originally at 20°C. If they are uniformly heated, at what temperature
will the hoop just fit over the disk?

Ans. 176°C

Problem 15.38.

(a¢) Find the change in volume of a zinc sphere of radius » = 20 cm when the temperature increases by 250°C.
(b) What percentage change in volume does this correspond to?

(¢) What percentage change in density does this correspond to?

Ans.  (a) 804 cm®; (b) 2.4%; (c) —2.4%
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Problem 15.39. A steel block weighing 10 1b and at a temperature of 450°F is dropped into a copper vessel
weighing 1.0 b filled with 3.0 Ib of water; the calorimeter temperature is 40°F. Find the final temperature.

Ans. 148°F

Problem 15.40. 100 g of steam at 100°C is fed into a calorimeter; the vessel has negligible heat capacity and
is filled with 0.200 kg of ice and 0.500 kg of water in equilibrium. Find the final temperature of the system.

Ans.  60°C

Problem 15.41. A lead brick of mass 20 kg and temperature 300°C is placed on a 10-kg block of ice at 0°C.
The system is well insulated from the environment. Describe the situation at equilibrium.

Ans.  Final temperature is 0°C, 2.33 kg of ice having melted.

Problem 15.42. A sealed 20-kg steel chamber contains 0.200 kg of gasoline [see Problem 15.32(q)] and
enough air to completely burn it. This chamber is suspended in a larger, 40-kg steel chamber filled with 50 kg
of water. The entire system, consisting of both chambers and their contents, is originally at 27°C and is well
insulated from the outside environment. The gasoline is ignited and completely burns. Calculate the changes in
the system’s (@) chemical internal energy, (b) mechanical internal energy, (c) thermal internal energy, (d) total
internal energy.

Ans.  (a) —9.18 MJ; (b) 0 MJ; (¢) +9.18 MF; (d) 0 MJ

Problem 15.43. Find the final temperature of the system of Problem 15.42. (Ignore the heat capacity of the
products of combustion in the inner chamber.)

Ans. 65.8°C

Problem 15.44. 1.0 kg of molten zinc at 420°C is poured onto a 2.5-kg lead brick initially at 27 °C, resting in
a calorimeter.

(a) If the heat capacity of the calorimeter is negligible, find the final temperature of the mixture.

(b) What fraction of each mass is liquid and what fraction is solid?

Ans.  (a) 327°C; (b) zinc is 100% solid, while lead is 8.45% solid and 91.55% liquid.

Problem 15.45. A solid steel cylinder, of radius R = 20 cm and mass M = 5.0 kg, rotates about its symmetry
axis without friction at an angular velocity of 30.00 rad/s. The cylinder is then uniformly heated so that its
temperature is raised by 100°C. What is the new angular velocity?

Ans. 2993 rad/s

Problem 15.46. The density of mercury at 0°C is 13.6 x 10 kg/m>. Find its density at 200°C.
Ans.  13.1 x 10° kg/m®

Problem 15.47. An electric hot water heater takes in cool water at 10°C and heats it to 70°C. If the hot water
is drawn off at 20 kg/min, what must be the minimum power rating of the heater?

Ans. 837 kW
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Problem 15.48. A lead bullet is fired into a very heavy block of wood in which it becomes embedded.
Assume that all the heat generated goes into the bullet and that the bullet’s temperature when it hits the wood is
127°C. What is the minimum velocity of the bullet that will cause it to completely melt in the wood?

Ans. 318 m/s

Problem 15.49.

(@) Referring to Problem 15.48, what would the actual kinetic energy of the bullet be if the mass of the bullet
was 20 g?

(b)) How much gasoline (h, = 4.6 MJ/kg) would have to burn to generate an equivalent amount of thermal
energy?

Ans. (@) 1.011 kJ; (b) 22 mg
J

Problem 15.50. How much heat must be removed from 4.0 kg of water at 27°C to convert it to ice at
(a) 0°C? (b) —15°C?

Ans. () 1.792 MJ; (b) 1.917 M]

Problem 15.51. A 15-kg child is running a fever of 3°C above her normal temperature of 37°C. Her father
rinses her with water at 40°C, knowing that the water will evaporate, drawing heat from the girl. If the heat of
vaporization of water at 40°C is 580 kcal/kg and the effective specific heat of the child is 0.85 kcal/(kg - °C)
how much water must evaporate to restore her to normal temperature?

Ans. 66 g



