Chapter 9

Rigid Bodies I: Equilibrium and Center of Gravity

In Sections 4.2 and 4.3, we discussed the concepts of translational and rotational equilibrium, as
well as the general requirement for translational equilibrium for particles and rigid bodies. The
requirements for rotational equilibrium of rigid bodies were also discussed for two simple cases: that
of a body acted on by only two forces and that of a body acted on by three forces. It would be useful to
review those two sections now. To deal with the general case of equilibrium of rigid bodies, when an
arbitrary number of forces are acting, we must use the concept of forque, or moment.

9.1 THE TORQUE OR MOMENT OF A FORCE

Definitions

The words torque and moment are synonymous, and we will use them interchangeably. In this
chapter, as in Chapter 4, we deal almost exclusively with situations in which the forces acting on a
rigid body are coplanar (in the same plane), allowing an algebraic definition of torque rather than the
more general vector one. An important feature of the definition of the moment of a force is that it
depends on the choice of a particular point in the plane relative to which the moment is defined. This
will become clear from the definition. ‘

In Fig. 9-1 we have a typical, rigid body and have displayed one of the coplanar forces F acting on
it. We pick some arbitrary point 4 and define I', the moment of the force F about the point 4, as
follows: First, draw the line of action through the force F (represented by the dotted line in Fig. 9-1.
Next, draw the perpendicular line from the point 4 to that line of action (represented by the dashed
line of length d, in Fig. 9-1). Then, by definition

T, = +dF (9.1)

Fig. 9-1
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where the choice of sign is determined by which way the force F would tend to rotate the body about
A: clockwise or counterclockwise. (If point 4 is outside the body, as in Fig. 9-1, imagine that it is
rigidly linked to the body and has a pin through it about which the whole system can rotate.) If point 4

“ were pinned, the force F would tend to rotate the body counterclockwise about the point. It is usual for
such a counterclockwise moment to be considered positive, while clockwise moments are considered
negative.

The distance d4 from point 4 to the line of action of F is given a special name. It is called the
moment arm of the force F about 4.

If more than one force is acting on a body, the total moment about A4 is the algebraic sum of the
individual moments about 4. In Fig. 9-2 we show three coplanar forces F;, F,, and F; acting on a
rigid body. The total torque is given as I'y = d 1 F1 — d.oF> + dF3, where the signs have been
chosen as explained above.

Note that the units of torque are force times length, the same as the units of work, although torque
has a quite different physical meaning. Typical units are N-m, dyn - cm, and Ib - ft.

Problem 9.1.

(@) Show that the torque I'4 of the force F shown in Fig. 9-1 would not change if one slides F to a
different location along its line of action. '

(b) Show that if the force F were replaced by —F acting anywhere along the same line of action, the
magnitude of the torque remains the same but the sign changes.
Solution
(@) From the definition, the torque depends only on the magnitude of the force and the moment arm to
the line of action. Since F and d, are unchanged, from Eq. (9.1) we see that I", is unchanged.

(b) The magnitude of —F is the same as that of F, and d; is unchanged, so the magnitude of Iy is
unchanged. Now, however, the force —F tends to rotate the object about 4 in the direction opposite
to that of the force F, so the sign of the torque must change.
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Problem 9.2.

(a) Find the sign of the torques of F; and F, about 4 as shown in Fig. 9-3.

(b)) What is the value of the torque of F5 about 4?

(¢) What are the signs of the torques of each of the three forces about point B?

Fig. 9-3

Solution

(a) F, has aline of action that passes very close to point 4, as shown. This might make it less obvious
which way F, tends to rotate the object about A. To help visualize the situation we use the results
of Problem 9.1, which allow us to slide F, along its line of action until it is as close to point 4 as
possible. Then it becomes obvious that F; tends to rotate the object clockwise about 4. Similarly,
F, also tends to rotate the object clockwise about 4. Recall that a clockwise rotation has a negative
sign.

(b) The line of action of F; passes right through 4. Then the moment arm d 43 = 0, and from Eq. (9.1)

I'43 = 0. Thus, any force whose line of action passes through a given point has zero torque about
that point.

(c) For point B it is not hard to see that F, and F; have counterclockwise moments (+), while F; has a
clockwise moment (—).

Problem 9.3. In Fig. 9-4 we have a force F acting at a given point in the body. Let r 4 represent the
relative displacement from point A4 to the point of application of F. If F= 15N, r, = 3.0 m, and
6 = 30°, find the moment of F about point 4.

Solution

Clearly F gives rise to a counterclockwise moment about 4. To find the magnitude of the moment
we must find the moment arm d,. From the triangle we can see that d, = r4 sin 6, so

T, = dyF = rF sin 6 = (3.0 m)(15 N)(0.50) = 225N -m
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Fig. 9-4

Another View of Torque

Problem 9.3 gives us a way of expressing the torque in terms of r,, the displacement from an
arbitrary point 4 to the point of application of the force F (Fig. 9-4). The torque due to F about 4 is

FA = :i:rAF sin9 (92)

where 6 is the angle between the vectors r, and F when their two tails are together. This leads us to yet
another expression for the torque. In Fig. 9-5 we reproduce Fig. 9-4 but now break F into components
F,, parallel, and F,, perpendicular, to r4. As can be seen from Fig. 9-5, F;, = F sin #. Thus, the torque
from Eq. (9.2) can be reexpressed as £r4F;. We thus have three equivalent expressions for the torque:

FA = :i:rAFsinB = :l:dAF = :EFAF; (93)

Fig. 9-5
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Note the symmetry between the last two expressions of Eq. (9.3): F, is the component of F
perpendicular to ry, and d4 (as can be seen in Fig. 9-4) is the component of r, perpendicular to F.

Problem 9.4. Figure 9-6(a) shows a ladder leaning against a smooth wall, with the various forces
acting on the ladder drawn in. Find the moment of the force F about point 4 by (a) finding the
moment arm d4 and using Eq. (9.1), and (b) finding the component of F perpendicular to r, and using
the right side of Eq. (9.3).

Solution

(@) d, is just the perpendicular distance from 4 to the line of action of F and is shown in Fig. 9-6(b).
Thus, d; = (20 m) sin 37° = 12 m. From Eq. (9.1): T, = (12 m)(30 N) = 360 N-m.

(b) Here we note that r, is along the ladder from 4 to the contact point with the wall. Then,
Fy=Fsin37°=(30N) sin 37° = 18 N, and from Eq. (9.3); Ty = r,F,= (20 m)(18 N) =
360 N-m.

9.2 THE LAWS OF EQUILIBRIUM FOR RIGID BODIES

Translational and Rotational Equilibrium

We are now able to express the necessary and sufficient conditions for translational and rotational
equilibrium of a rigid body acted on by any number of coplanar forces. Two conditions must hold:

1. The vector sum of the forces must vanish.
2. The algebraic sum of the torques about a given point must vanish.

Mathematically:
(1) XF=0 2) XTau=0 (9.4a, b)
The first condition (4a) can be expressed in component form:
D Fp=0 > Fy=0 (9.5a, b)

Note. Equation (9.4a) [or Egs. (9.5)] is the statement of Newton’s first law applied to a particle.
From our discussion of the center of mass of a system of particles in Chap. 8 these same
equations are statements of the law of translational equilibrium for the CM of a rigid body.
Equation (9.4b) can also be derived from Newton’s laws for particles, as will be
demonstrated in the next chapter. ‘

Problem 9.5. Suppose the ladder in Fig. 9-6(a) is at rest under the action of the forces shown. The
ladder is uniform so that we can consider its weight W to act at its center. Calculate the values of the
weight ¥, the normal force &V, and the frictional force f.

Solution

Since the ladder is at rest, it is in both translational and rotational equilibrium. Therefore, Eqs. (9.4)
must hold. If we take moments about 4, the friction and normal forces don’t contribute since their lines
of action pass through 4. Thus the only two forces contributing are F and W. The moment of F was



CHAP 9]

RIGID BODIES I: EQUILIBRIUM AND CENTER OF GRAVITY
F=30N
,
‘ . X
e T Z
s / 4 A I o
}r kh
N .
(@
r'd
7
rd
/\\
F,
7/ \ t
C //37‘& \
1 -
:_l 37° NP L
i \\ » 7 F r
|
|
|
I
|
l e
| >
|
dy i
|
|
i
|
|
I
|
! 37°
QA (4]
&)

Fig. 9-6

223



224 RIGID BODIES I: EQUILIBRIUM AND CENTER OF GRAVITY [CHAP 9

already calculated in Problem 9.4: T = 360 N - m. We note that the moment is clockwise for W, and
hence negative, and that the moment arm is just half the floor distance from A to the wall:

dgw =420 m) cos37° = 8.0 m
Then Iy = —~d W = —(8.0 m)W, and Eq. (9.4b) yields
T4r+Tuw =360N - m— (8.0m)W =0 o W =45N

From the first condition of equilibrium, Egs. (9.5), we have, in the horizontal and vertical directions,
respectively,

F—f=30N—f/=0 or f=30N
N—-—W=N-45N=0 or N=45N

Problem 9.6. In Fig. 9-7 we have a light rod of length 5.0 ft free to pivot about a horizontal axis
through point 4. A weight of 10 1b hangs from one end.

(a) What force F must be applied at the other end to keep the rod from rotating?
(b) What then is the force N exerted by the pivot on the rod?

-— 1.0ft —p | - 4.0 ft >

Fy

w=101b
Fig. 9-7

Solution

(a} Since the rod is light, we may neglect its weight. By taking moments about 4, we get
(1.0f)F — (4.0 f)(10b) =0 or F=401b

(b) For translational equilibrium Egs. (9.5) must be obeyed. Taking the y components we héve
N-—F-w=N-40b-101b=20 N=50Db

Choice of Points about Which to Take Moments

In Problems 9.5 and 9.6 we made specific choices of the point about which moments were to be
taken for use in Eq. (9.4h). Would we have gotten different results if we had taken moments about
some other point? Is there a “correct” point about which to take moments in applying the laws of
equilibrium?

The following result can be proved: If the first condition of equilibrium, Eq. (9.4a), holds, and if
Eq. (9.4b) holds about a particular point 4, then Eq. (9.4b) will also hold about every other point as
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well. Thus, once the vector sum of forces adds up to zero, the sum of the moments about one point
will be zero if, and only if, the sum of the moments about every other point is zero.

This result is particularly useful for two reasons. One is that you can always check your solution to
an equilibrium problem by taking moments about a different point and checking that they add up to
zero. The other is that you have complete flexibility in picking the point about which to calculate
moments for Eq. (9.4b). This means that you can pick the point that is most convenient for solving the
problem. For example, in Problem 9.5, point 4 is a particularly convenient choice since it eliminates
the forces f and N from the moment equation and hence leaves just one unknown, the weight W.

Problem 9.7. Check your answer to Problem 9.5 by taking moments about point C in Fig. 9-6(a).
Solution

The sum of the moments about point C must add up to zero. The forces, as determined in Problem
9.5 are F=30N, W=45N, f=30N, N=45N. Referring to Fig. 9.6(z), we note that F has
no moment about C; W and f have counterclockwise (positive) moments about C; N has a
clockwise (negative) moment about C. The moment arms are easily obtained by looking at
perpendicular distances from C to the lines of action of the forces: dep = %(20 m) cos 37° = 8.0 m;
dcy = (20 m) cos 37° = 16 m; dgr= (20 m) sin 37° = 12 m. Then

T'c=dowW + dcff —dcyN = (80 m)(45 N) + (12 m)(30 N) — (16 m) (45 N)
=360N- m+360N - m—720N - m=0

Note. In getting the moments of the forces acting on the ladder at point 4 we treated f and N as
separate forces even though they are acting at the same point in the body. We could have
replaced them by their vector sum and considered the moment of that single force. There
was no point in doing so since the moment arms to the individual forces f and N are easily
obtained, while getting the moment arm to the vector sum of f and N would have been
harder. Actually, the reverse process is often more useful: If one is given a single force
acting at a point, it is sometimes easier to break the force into a sum of two forces whose
moment arms are easier to calculate.

Problem 9.8. Check the results of Problem 9.6 (Fig. 9-7) by taking moments (@) about point B
at the left end of the rod, and (b) about point C, which is 1 ft from the right end of the rod.

Solution

(a) The force F contributes zero moment about the left end of the rod. Then
Iy = (1.0 ff)N — (5.0 ft)w = (1.0 ft)(50 Ib) — (5.0 ft)(10 Ib) = 501b - £ —501b - ft =0

(b) About point C all three forces contribute:
e = (4.0 ft)F — 3.0 ft)N — (1.0 ft)w
= (4.0 f1)(40 1b) — (3.0 ft)(50 1b) — (1.0 ft)(10 1b)
=160Ib - fi—150b - ft—10b - ft=0

Problem 9.9. A uniform rectangular block of weight w = 40 N moves at a constant speed along a
frictionless horizontal surface, under the action of forces F; and F», as shown in Fig. 9-8.

(a) Find the magnitude of the force F, and of the normal force N.
(b) Find the point of application of the normal force, as measured from the left end of the block.
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1.0m . | -
Y -@— : l
w=40N
.
Fig. 9-8

Solution

(@) Since the block is undergoing translation at constant velocity and is not rotating, it is in
equilibrium. We first consider the first condition of equilibrium, Egs. (9.5). For the x direction

Ficos30°—F, =0 or F,=173N
For the y direction .
F1sin30°+N —-40N=0 or N=30N
Thus, part (a) is solved without resort to the second condition of equilibrium.

(b) Here we need to find the location of the line of action of the normal force. Cléarly only a moment
equation will give us such information. We take moments about the point 4 at the left lower corner
of the block. Since it will be difficult to find the distance of the line of action of the moment arm of
F, from 4, we replace F; by a pair of forces, one horizontal and one vertical, corresponding to the
components F, and F,. These forces have magnitudes F;, = 17.3 N and Fi,, =10 N. Then

Iy = (1.0m)F, — (2.0 m)w+ (4.0 m)Fy, — (2.0 m)Fy, +xN =0
Substituting we get
Fy=(1.0m)(17.3N) — (2.0 m)(40 N) + (4.0 m)(10 N) — (2.0 m)(17.3 N) + x(30 N) = 0

or x=191m

Problem 9.10. Check the results of Problem 9.9 by taking moments about point B.
Solution

The force F, does not contribute a moment about point B, so
I'p=(2.0m)w— (1.0m)F, — (4.0m —x)N =0
= (2.0 m)(40N) — (1.0 m)(17.3 N) — (2.09 m)(30 N) = 80 — 17.3 — 62.7 = 0

Problem 9.11. A weight /7 = 500 N hangs from one end of a uniform horizontal beam of weight
w = 100 N and length L whose other end is pivoted at point 4 on the wall [Fig. 9-9(a)]. The beam is
supported by a wire making an angle of 40° with the beam. Find (a) the tension in the wire, (b) the
vertical and horizontal components of the force exerted by the pivot on the beam.
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Fig. 9-9
Solution

(a) The forces acting on the beam are shown in Fig. 9-9(b). Since the beam is in equilibrium, Eqs.
(9.4b) and (9.5a, b) must hold. If we take moments about point B, the forces T, W, and F, do not
contribute since their lines of action pass through B. The only unknown force in the equation will
then be F), so we can solve for it.

L
I's= (§>W—LF),=0 or %(IOON)—Fyz() or F,=350N
To find T we use Eq. (9.5b6):
F,—w— W+ Tsin40° =0 or 50 N — 100 N — 500 N + (0.643)T =0
or T=855N -~

(b) We already obtained F, = 50 N. To get F, we use Eq. (9.5a)
. Fy—Tcos40° =0 or F, = (855 N)(0.766) = 655 N

Problem 9.12. If the beam in Problem 9.11 could be considered weightless, what would then be the
values of T, F), and F,?

Solution

We could redo the formal steps of Problem 9.11 with w set equal to zero, but it is easier to approach
the problem more directly. First we note that if-w = 0, the only force contributing any moment about
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point B is F,. Since the sum of the moments must be zero, we have F, = 0. Then, from translational
equilibrium,

T,—W=0 or (0.643)T =500N=T =778 N
Finally from Eg. (9.52) ‘
T,—F,=0 or F,=(0.766)(778 N) = 596 N
Problem 9.13. The uniform boom of length L (Fig. 9-10) weighs w = 800 N and supports a load
of W= 1000 N on one end.
(a) Find the tension T in the support wire.

(b) Find the magpitude and direction of the force F exerted on the boom by the pivot at point 4.

W=1000N -

Solution

(a) We take moments about point 4, which eliminates the force F from the moment equation. Then
I = (L sin 30°)T — (L cos 30°)W — YL cos 30°)w = 0. Dividing out L we get

(0.50)7 — (0.866)(1000 N) — (0.433)(800N) =0 or 7 =2425N

(b) Breaking F into x and y components, we get from Eq. (9.5a):
F,.—-T=0 or F, =2425N
from Eq. (9.5b):
Fp-w—W=0 or F,=1800N
Then
F = [(2425 N)* + (1800 N)*]'/? = 3020 N
If 0 is the angle of F above the positive x axis,

F, 1800
F, 2425

=(0.742 or 0 =36.6°

Problem 9.14. A uniform ladder of length L =60 ft and weight w = 50 Ib leans against a
frictionless wall. The ladder makes an angle of 50° with the floor, and the coefficient of friction
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between ladder and floor is g, = 0.50. A painter, weighing (with bucket) W = 160 Ib, starts to climb
the ladder. What distance x along the ladder can the painter go before the ladder starts to slip?

Solution

The situation is depicted in Fig. 9-11, with all the forces on the ladder drawn in. So long as the
ladder is in translational equilibrium

N=w+W=2100b and f=F

W=1601b

ps =0.50 £ ' A

Fig. 9-11

independent of the position of the painter. In the moment equation (9.4b), about point 4, only F appears
as an unknown; furthermore, as the painter climbs the ladder, the clockwise torque about 4 due to W is
increasing, because the moment arm is increasing. This can be balanced only by an increasing
counterclockwise torque due to F. Since the moment arm from 4 to the line of action of F is fixed, the
torque due to F can increase only if F increases. Since /= F, this means that f must keep increasing as
the painter climbs the ladder, until it reaches its maximum value,

Sonax = N = (0.50)(210 Ib) = 105 Ib = Fax
Thus, just before slipping takes place, (9.4) gives
I, = [(60 ft) sin 50°] Fnax — [(30 ft) cos 50°Iw — [Ximax cO8 S0°| W
= (60 )(0.766) (105 1b) — (30 ft)(0.643)(50 Ib) — Xmax(0.643)(160 Ib) = 0

whence xpax = 37.5 ft.
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-

9.3 EQUIVALENT SETS OF COPLANAR FORCES

We have seen that to have translational and rotational equilibrium for a rigid body acted on by a
set of coplanar forces, the set of forces must obey precisely two conditions, as expressed by Egs.
(9.4a, b). Nothing further need be known about the details of the set of forces to ensure equilibrium.
The body will still be in equilibrium if our original set of forces is replaced by any other set of forces
obeying the same equations. This leads us to an intriguing question. Suppose a rigid body acted on by
a set of coplanar forces is not in equilibrium and we want to fully describe its translational and
rotational motion. What do we need to know about the set of forces to completely describe the body’s
motion? -

Our discussion of center of mass in Chap. 8 indicated that the acceleration of the CM is completely
determined by the resultant external force acting on the body. In Chap. 10 we will see that the
rotational motion of the body depends only on the resultant external torque acting on the body. From
these results we can deduce that if we have two different sets of coplanar forces, and each set adds up
to the same resultant force and gives rise to the same resultant torque (about any given point), then
each of the sets will affect the motion of the object in precisely the same way. Let us state without
proof that:

One can always replace one set of forces acting on a rigid body by any other set of
forces having the same vector sum and the same resultant torque (about any chosen
point) to get the same effect on the motion of the body.

Center of Gravity

The above result turns out to be extremely useful. It explains why we are justified in assuming that
the weight of a rigid body is a single force acting at a particular point in the body, even though there
are myriad forces due to gravity on the individual molecules making up the body. It also explains why
we can assume that the normal force acting on the surface of one object by another can be assumed to
be a single force acting at a given point on the object, even though, in reality, there are myriad forces
acting between the molecules of the two surfaces. Indeed it can be shown that, except for one special
case (discussed below), any set of coplanar forces acting on a rigid body can be replaced by a single
force (their resultant), acting along a particular line of action.

Problem 9.15. Find the single force F that can replace the two parallel forces F; and F, acting on
the body shown in Fig. 9-12, and find its point of application.

Solution

The single replacement force must equal the vector sum of the original forces. Since the forces are
parallel, the force F points in the same direction and has magnitude F=F +F, =
30 N + 20 N = 50 N. Further, the moment of F about the origin must equal the combined moments
of the original two forces: I' = I'| + I's = xF = x1F| + x2F,

x(50N) = (6.0m)(30N) + (120m)(20N) or x=840m

The force F can act anywhere along its line of action.

Problem 9.16. Find the single force that can replace the three forces shown in Fig. 9-13, and
find its line of action.



CHAP. 9] RIGID BODIES I: EQUILIBRIUM AND CENTER OF GRAVITY
y F
Fi=30N 4 F=20N
1
|
|
|
| |
\ |
L .
1 ! I x
X1 X X9
(6.0 m) (12.0m)
Fig. 9-12
y1=5,0m Fp=15N
yp————_———_———f - — == » F
y2=10.0 m F2 =25N
Fig. 9-13
Solution

Again, our single force is parallel to F; and F, and has magnitude

F=F+F,-F;=15N+25N-10N=30N

The line of action is determined by equating moments about the origin:

yF = y1F1 +y2F2 — y3F3

Substituting, we get

Y30 N) = (5.0 m)(15 N) + (10 m)(25 N) — (13m)(10N)  or

y=65m

231
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Problem 9.17. Figure 9-14 depicts a flat irregular plate in the xy plane, where y is the vertical
direction upward from the earth’s surface. The weight vectors wy, Wa, ... , W, ..., represent the pull of
gravity on the various individual molecules of the plate. Show that (a) the single force W which can
replace these forces is just the weight of the object; () the line of action of W passes through the M
of the plate.

Earth

A

W

Fig. 9-14

Solution

(a) Since all the individual w’s are parallel, their resultant W must point in the same direction and must
be of magnitude
W=w+w+ -+ +w;+ -« =Zw, (@)

where W equals the total weight of the plate.

(b)) We equate moments about the origin. Let x; be the moment arm of w; and X the moment arm
of W. Then, XW = Zx;w;. Dividing by W, using Eq. (i), and recalling that w; = m,g, we get

__ Zmix,- _ Zmixi ()

N Zmi - M .

where M is the total mass of the plate. Comparing Eq. (ii) to Eq. (8./9a), we sce that X = Xcpy.

The results of Problem 9.17 can be extended to any arbitrary orientation of the plate, in three
dimensions as well as in two dimensions. For example, by considering the object to be rotated by 90°
in the x, y plane and redoing the problem we find that the single force W which replaces all the
individual weights is still the total weight of the object, and its line of action of W still passes through
the center of mass. Thus, no matter what the orientation, one can always assume the weight of a rigid
body acts at the CM. The point in a body where the total weight can be assumed to be acting is often
called the center of gravity (CG). Thus the center of gravity and the center of mass are one and the
same point.
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Problem 9.18. Locate the CG of the composite object, made of three copper strips shown in
Fig. 9-15.

y
10.0cm
I 1.0cm
—————— Symmetry axis
1.0cm
"~ 10.0cm 1.0 cm
0 X

1.0cm 1.0cm

Fig. 9-15

Solution
The CM or CG of each strip lies at its geometric center. By symmetry we also know that the overall
CG of the composite lies somewhere along a horizontal line through the CG of strip B. The total weight of

the object passes through this overall CG, and it must have a moment about the origin equal to the sum of
the moments of the weights of the individual strips:

XcegW = xqwq + XpWp + XcWe
_ X4Wy + XBWB + xcwc

and Xcg = i
o wq +wp + wc )

From Fig. 9-15, we have x4 = x¢ = 6.0 cm and xg = 1.5 cm. While we are not given the weights of the
strips, we do know they are all made of the same material, so their weights are proportional to their
areas, and wg = 0.60w,; wc=wy. Substituting this into () and dividing out w,, we get
Xeg = (x4 + 0.60xz + x0)/(1.0 + 0.60 + 1.0) = [6.0 cm + 0.60(1.5 cm) + 6.0 cm]/2.6 =4.96 cm.
Thus the overall CG is 3.46 cm to the right of the CG of strip B.

Problem 9.19. A ladder consists of two wood segments of equal length and a crosspiece of
negligible weight, as shown in Fig. 9-16. When the ladder is open, both segments make an angle of
60° with the floor. Each segment is uniform but of different weight, as shown. Find the CG of the open
ladder.
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10.0m
Fig. 9-16

Solution

The CGs of the two segments are at the same height above the ground. If the earth were tilted by 90°
and pulling in the direction of the x axis, the weights of both segments would have a common line of
action. The overall weight would, of course, have to have the same line of action. Thus we know that the
overall CG must lie along the horizontal line between the two individual cGs. To find where along the
line it acts, we go back to the actual situation with the earth pulling downward. Then, taking moments

about point 4, we get

Xiw1 + 2w,

Xog =
w1+ Wy

(@)

where x; and x, are the moment arms to the weights w; and w,, of left and right segments, respectively.
We have x; = (5.0 m) cos 60° = 2.5 m; x, = (10 m) cos 60° + (5.0 m) cos 60° = 7.5 m. Substituting
into Eq. (i), we get

_ (2.5m)(40N) + (7.5 m)(10 N)
B 50N

XCG =35m

Couples

We return to the exceptional case in which a set of coplanar forces cannot be replaced by a

single force. As long as the resultant of the set of coplanar forces is not zero, we can always find
a point of application, far or near as needed, so that the torque of the resultant matches the torque of
the set itself. But, what happens if the resultant force is zero, while the resultant torque is not zero?
Then the zero resultant force can never give rise to the needed torque! Figure 9-17(a) depicts such a
situation. Clearly the resultant of the three forces acting on the body is F=F, + F, — W=
201b + 10 Ib — 30 Ib = 0. The sum of the torques about the origin is

I = (5.0 f1)(20 Ib) + (15 ft)(10 Ib) — (10 ft)(30 Ib) = —50 Ib - ft
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1 Xeg X o X x+d
(5.01ft) (10.0 ft) (15.0 ft)

(@) ®)
Fig. 9-17

For such situations, we can’t replace the system by a single force, but we can replace the system by a
pair of equal and opposite forces displaced a distance d from each other. Figure 9-17(d) shows such a
pair of forces for the case at hand. Clearly the pair of forces sums to zero. In addition the torque due to
the pairis xF — (x + d)F = —dF. For any choice of x one gets the same torque, so the location of the
pair is unimportant. Furthermore, one has complete flexibility in the choice of F, as long as the
product dF gives the desired result. A pair of equal and opposite forces giving rise to a torque is called
a couple. In picking the couple for this example we chose the upward force to the left of the
downward force to assure that the torque about the origin came out negative. As we saw earlier, the
torque due to a couple does not depend on the absolute location of the couple, but rather only on the
choice of d and F.

In Fig. 9-18 we depict three objects that are tilted slightly from their equilibrium positions on a
horizontal table: a cylinder (a) and a cone (b) with broad support bases initially touching the table
surface, and an inverted cone (c) with just the apex touching the table surface. In each case the objects

i

(/
N
i
N I N
|
(a) cylinder (b) cone (¢) cone (inverted)

Fig. 9-18
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‘

are acted on by two forces, the weight downward acting at the CG (or CM) and a normal force upward.
In equilibrium these are equal and opposite. Furthermore, before tilting, they also have a common line
of action. That is, the normal force appears directly under the CG to assure equilibrium. After a slight
tilt to the left, for our first two cases, the normal force acts on the leftmost edge of the broad base, a
point which is to the left of the CG. We have, in each case, a couple that gives a clockwise moment and
tends to return the object to its equilibrium position. Similarly, had the tilt been to the right, we would
have a counterclockwise couple that again tends to return the object to its equilibrium position. For a
situation in which every slight tilt from equilibrium gives rise to a couple that restores equilibrium, we
say that the equilibrium is stable.

Case (c) is quite different. Here, a slight tilt either way gives rise to a moment that tends to make
the cone tilt even more in the same direction, so the cone falls over on its side. Whenever a slight tilt
of an object away from equilibrium gives rise to a couple that continues the motion away from
equilibrium, we say the equilibrium is unstable.

Problem 9.20. Determine the kind of equilibrium we have for the three objects in Fig. 9-19.

CG
W[

(@)

CG
W[

®

wy

(©)

Fig. 9-19
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Solution

(@) In the equilibrium position, the CG is between the two edges of the base touching the ground. A
slight tilt to the left will therefore put the normal force under the left edge, while the CG will still be
to the right of that point; the couple will therefore restore the object to the equilibrium position.
The same reasoning holds for a slight tilt in the other direction. Thus we have stable equilibrium.

(b) The CG lies to the left of the right edge on the ground. A slight tilt to the right will leave it so, and
we get a couple that restores equilibrium. The result is even more obvious for a tilt to the left. We
thus again have stable equilibrium.

(¢) The CG is directly over the right edge on the ground. Now even the slightest tilt to the right will put
the CG to the right of the normal force, and the object will topple. We thus have unstable
equilibrium.

Problem 9.21. What kind of equilibrium do we have for the two objects shown in Fig. 9-20, a
uniform cylinder and a uniform cone lying on their sides?

s

Fig. 9-20

Solution

A slight motion of either object leaves the normal force directly below the CG. Thus if one moves
the cylinder by rolling it slightly to a new position and then releasing it from rest, it will stay in
equilibrium in the new position. It will neither return to its original position nor move further away. It is
thus in neither stable nor unstable equilibrium. It is said to be in neutral equilibrium.

Problem 9.22.

(@) Two identical heavy lead weights are suspended from the ends of a light, thin, bent aluminum
rod, that is balanced at its center on a pivot. [Fig. 9-21(a)]. Describe the nature of the equilibrium
of the system.

(b) A plastic horse and rider are connected rigidly by a stiff curved wire to a heavy iron ball, as
shown in Fig. 9-21(b). The horse is supported by one foot on a narrow platform. Describe what
happens when the horse and rider are tilted in any direction.

Solution

(a) In the equilibrium position the CG is located directly below the pivot point midway along and
slightly dbove the line between the centers of the two weights. Although the CG is located outside
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@ ®)
Fig. 9-21

the body, it maintains a geometrically fixed position relative to the body as the body moves. When
the system is not touched, it is acted on by only two forces: gravity at the CG and the upward
normal force at the pivot. At equilibrium these forces are equal and opposite and have a common
line of action. When the body is rotated slightly in the counterclockwise direction about the pivot,
the CG moves to the right, and the two forces form a clockwise couple, which returns the object to
the equilibrium position when the object is let go. Similarly, after a clockwise rotation, the .object
will again return to the equilibrium position. The equilibrium is therefore stable. A slight:tap on
either side will set up oscillations about the equilibrium position because the object picks up speed
as it returns to equilibrium and overshoots the equilibrium position, where the process is reversed.
If friction is low, these oscillations can last a long time.

(b) The situation here is essentially the same as in part (@) because the heavy ball lowers the CG to
below the pivot, as shown. Tilting the hotse in any direction and letting go leads to oscillations
about the equilibrium position.

Problems for Review and Mind Stretching

Problem 9.23. Show that the statement of Chap. 4, that for a body to be in équilibrium under the
action of three forces the forces must be concurrent, follows from Egs. (9.4a, b).

Solution

From Eq. (9.4a) we have that the vector sum of the three forces addsup to zero, so the three vectors
form a triangle and therefore are in the same plane. For them to be concurrent, their lines of action must
pass through a common point. Consider the point of intersection of the lines of action of two of the
forces, and call it point 4. In taking moments about 4, these two forces don’t contribute. Equation (9.4b)
then implies that the third force must have zero moment about 4, so its line of action passes through A4 as
well.

Problem 9.24. A uniform horizontal rod 2.0 m long and weighing w = 20 N has weights of 80 and
40 N hanging from its ends (Fig. 9-22). Find (a) the magnitude and direction of the fourth force F
necessary to keep the rod in equilibrium; (b) the point of application of the force F on the rod.
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20m

Y

A

w=20N

- Fig. 9-22

Solution

(a) From the first condition of equilibrium, Eq. (9.4a), we must have that F is vertically upward and
balances the other three forces:

F=8N+20N+40N=140N

(b) From the second condition of equilibrium, Eq. (9.4b),
x(140 N) — (0 m)(80 N) — (1.0 m)(20 N) — (2.0 m){40N) =0 or x=0714m

Problem 9.25. A large wooden crate 8.0 ft high, 3.5 ft wide, and of weight w-= 100 1b rests on a
horizontal surface with coefficient of static friction y, = 0.60. Assume the CG of the crate is at its
geometric center. A horizontal force F is applied to the crate to get it moving. Below what height A
must be force F be applied if the crate is to start to slide before it starts to tip over?

Solution

The situation is depicted in Fig. 9-23. The crate is acted on by the four forces: w, N, f, and F, where
f is the retarding frictional force and N is the normal force of the floor on the crate. Let x represent the

3.5 ft

8.0ft
h
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distance from the left edge of the crate, point 4, to the point of application of N. To just get the crate to
slide, we must have

F = fonax = 4;N (7)

From equilibrium in the vertical direction, N = w = 100 Ib. Then (i) gives F = 0.60(100 1b) = 60 Ib.
The question of whether the crate tips or not can be resolved by examining where the normal force acts.
If N acts at the extreme right edge, the entire crate loses contact with the floor, except at that edge; this is
the condition for just starting to tip. Taking moments about A, we see that f does not contribute, while w
contributes a fixed clockwise moment. For fixed F = 60 Ib, the clockwise moment of F increases with
the height # at which it is applied. To balance the clockwise moments of F and w, we have only the
counterclockwise moment due to N. For fixed N =100 lb, this moment can get larger only by
increasing the moment arm x. We therefore set x equal to its maximum possible value, 3.5 fi, to
determine A,

T = (3.5 f9)(100 1b) — himge (60 Ib) — (1.75 £)(1001b) =0 or  Fipay = 2.92 ft

Problem 9.26. A uniform door, of height 3.50 m and width 1.50 m and weighing 200 N, is
supported by two small hinges, as shown in Fig. 9-24. The hinges are symmetrically placed, 20 cm
from the top and bottom of the door. If the top hinge supports the full weight of the door, find the
horizontal forces exerted by each hinge on the door.

~ 15m
20 cm{ 3
35m
w=200N
20 cm{ '
Fig. 9-24

Solution

Since the only horizontal forces on the door are the hinge forces, they must be equal and opposite;
let their common magnitude be F. The top hinge also exerts a vertical force of 200 N on the door to
balance the weight of the door. If we calculate moments about the lower hinge, the only forces
contributing are the weight w = 200 N and the horizontal force F due to the upper hinge. Since the
weight gives a clockwise moment, force F must be to the left. Then

I'=(350m—040m)F — (0.75m)(200N) =0 or F=484N
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Problem 9.27. Find the CG of the uniform disk of radius R = 2.0 m with a small disk of radius
r = R/3, cut out, as shown in Fig 9-25.

r=R/3

Symmetry axis

Center of large disk

Fig. 9-25

Solution .

At first this seems to be a formidable problem, but consider the disk with the piece missing. We
know, by symmetry, that the CG (or CM) lies along the x axis, as shown, but we don’t know where along
the axis. If we put the cutout piece back in place, the CG of the combination would be just that of the
whole disk and would be at its center. Assume that X is the moment arm from point 4 to the CG of the
disk with the piece missing, and W is its weight. Similarly let x be the moment arm to the CG of the
cutout piece and w be its weight. Then let X7 be the CG for the combined (complete) disk. We have

R
x=R—r:R—§=1.33m and Xr=R=20m (@)
Also, the weights of the two pieces are proportional to their areas:
W= gnr? W =orn(R—r?) (ii)

where ¢ is the proportionality constant, Note that in the second term, for #, we have subtracted out the
area of the cutout. Then, solving for the CG of the combination of the two pieces, we get

Xr(w+ W) =xw+XW (i)
Substituting and simplifying common terms, we get
8X
XT(RZ):er —|-X(R2—r2) or XT:g+_9—

so that X = 2.08 m.

Supplementary Problems

Problem 9.28. Find the sign of the torques of the three forces in Fig. 9-2 about point B. Use the standard
convention.

Ans. T’y is positive; I'; is negative; I'3 is positive



242 RIGID BODIES I: EQUILIBRIUM AND CENTER OF GRAVITY [CHAP. 9

Problem 9.29. Assume that the moment of the force in Fig. 9-4 about 4 is 100 N-m. If d, = 20 m and
rq = 60 m, find (a) F; (b) 6.

Ans. (@) F=5.0N; (b) 0 =19.5°

}

Problem 9.30. Assume that the rod of Fig. 9-7 is free to pivot about point 4 and that a 10-Ib weight hangs at
one end as shown. If the rod is uniform and has a weight of 3.0 Ib, find the value of (a) the force F necessary for
equilibrium; () the pivot force N necessary for equilibrium. ’

Ans.  (a) 44.5 1b; (b) 57.5 1b.

Problem 9.31. For the boom-and-weight system of Fig. 9-26, find (a) the tension in the wire, (b) the
magnitude and direction of the force exerted by the wall on the boom.

Ans.  (a) 108 N; (b) 78 N, 46° above horizontal

Supporting
wire

|l w=100N

w=50N

Fig. 9-26

Problem 9.32. Assume that the boom in Fig. 9-9(a) is weightless, that the maximum tension the wire can
withstand without snapping is 3000 N, and that the maximum compressive force the boom can withstand
without buckling is 2000 N.

(@) When the hanging weight W is increased, which will happen first: the wire snapping or the boom
buckling? '

(b) At what values of T'and W will the event in part (a) occur?
Ans.  (a) The boom will buckle; (b)) T= 2610 N, W= 1680 N

Problem 9.33. How will the results of Problem 9.32 change if the uniform boom had a weight of 600 N?
Ans. (@) The boom will again buckle; (b)) 7= 2610 N, W = 1380 N
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Problem 9.34. Find the x and ¥ components of the force F exerted on the boom by the wall for (¢) Problem
9.32(b), (b) Problem 9.33(5).

Ans. (@) F, = 2000 N, F, = 0 N; () F, = 2000 N, F,, = 300 N

Problem 9.35. The ladder shown in Fig. 9-16 rests on a frictionless horizontal surface. The two segments of
the ladder are hinged at the top and held together by a weightless horizontal crosspiece. Find the normal forces
exerted by the floor on the ladder at points 4 and B.

Ans. Ny=325N; Ng=175N

Problem 9.36. Referring to Problem 9.35 and Fig. 9-16, assume that the crosspiece is attached at a point
4.0 m along the length of each ladder segment as measured from the bottom. Find the tension in the crosspiece.
[Hint: Take one leg of the ladder as the system and apply the laws of equilibrium to it, using the results of
Problem 9.35.]

Ans. 120N

Problem 9.37. In Fig. 9-27 a block of weight w = 80 N is being pulled at constant speed along a horizontal
surface by a force F acting at 20° above the horizontal. The coefficient of kinetic friction between surface and
block is py = 0.40. Determine F and N, using only the first condition of equilibrium in the x and y directions.

Ans. F=297N; N=698 N

1

30 cm o
A
60 cm
F
AN
20°\
w=80N B ——d———
15¢m
Yy
r A ] *
x W, =04
N
Fig. 9-27

Problem 9.38. Referring to Problem 9.37, find the distance from the left edge of the block to the point of
application of the normal force.

Ans. 18.8 cm
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Problem 9.39. Suppose that in Problem 9.37 the force F remained in the same direction but had a higher point
of application B. How high could point B get before the block started to tip over?

Ans. 43 cm
14

Problem 9.40. For the uniform boom of length L supported by a horizontal wire (Fig. 9-28), find (a) the
tension in the wire, (b) the magnitude and direction of the force exerted on the boom at the pivot.

Ans.  (a) 8.74 kN; (b) 10.6 kN, 34.5° above horizontal

Fig. 9-28

Problem 9.41. The wire in Problem 9.40 has a breaking point of 12.0 kN. Assuming the point of attachment
B of the wire is placed lower on the boom while the wire is kept horizontal, how far down along the boom can
point B get before the wire snaps?

Ans.  0.454L from the top

Problem 9.42. A uniform seesaw of length 20 ft has two youngsters of weights w, = 100 1b and w; = 40 1b,
sitting on the ends (Fig. 9-29). Find the proper location x of the pivot for the seesaw to be just in balance, if (a)
the weight of the seesaw can be ignored, (b) the secesaw weighs 30 Ib.

Ans. (a) 5.71 ft; (b) 647 ft

20 ft

wy =40 1b
w,=1001b

Fig. 9-29

Problem 9.43. A very thin rod bent into the shape of a right angle (90°) is made of a material which weighs
30 N per linear meter. In addition to gravity, there are two forces acting to keep the rod fixed: F; at the elbow
and F, at point B (Fig. 9-30).
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—_——————

Fig. 9-30

(a) Find the magnitude and direction of F,.
(b) Find the distance x to the point of application of F."

Ans. {(a) 147 N, 72.8° above negative x axis; (b) 2.19 m

Problem 9.44. In Fig. 9-31 a rigid object, whose weight can be ignored, is acted on by the three forces shown.

(@) Find the x and y components of the single force F that can replace these three forces.
(b) Find the total torque of the three forces about the origin.

Ans. (a) F,=88.5N,F,=849N; (b) ~159N - m

y (cm)

¥2=40 F——7

y1=30 f-—f--

|
|
|
|
|
yy=25 F=fmmmmm Aoee
|
|
I
|
|
|
|
]

x (cm)
o x1=20 JC2=4O .X3=50

Fig. 9-31
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Problem 9.45. A point on the line of action of F in Problem 9.44 has abscissa x = 30 cm. What is the
corresponding ordinate? [Hint: Assume that the force F acts at this pomt on its line of action, and determine y
from the torque requirements.]

Ans. y= 46.7 cm

Problem 9.46. Find the x and y coordinates of the CG of the bent rod in Fig. 9-30. Use the coordinate system
shown in the figure.

Ans. x=—1.11cm; y= —0.36 cm

Problem 9.47. Find the CG of the asymmetrical dumbbell of Fig. 9-32.
Ans.  14.7 cm left of center of large sphere, along symmetry axis

R,=10cm
/ w,=10N
¢ ]
/= L=80cm
w,=20N
w,.= 160 N
Fig. 9-32 .

Problem 9.48. Suppose that in addition to the weight the only other force acting on the dumbbell of Problem
9.47 were an upward force F of magnitude 190 N. Find the horizontal distance to the line of action of F, as
measured from the center of the large sphere, if the resulting couple gave (@) a clockwise moment of
1600 N - m, (b) a counterclockwise moment of 5600 N - m. :

Ans.  (a) 23.1 cm to left; (b) 14.8 cm to right



