Chapter 4

Forces and Equilibrium

Note. In introductory mechanics it is usually assumed that all forces act in the same plane
(usually called the xy plane). Such forces are said to be coplanar. This assumption
simplifies the mathematics considerably but still allows for a substantial understanding of
the underlying physics involved.

4.1 FORCES

A force is a mechanical effect of the environment on an object. It is either a push or a pull on an
object, and has both a magnitude (in appropriate units such as newtons, dynes, or pounds—units of
force are discussed in detail in Chap. 5) and a direction. It can thus be represented by a vector. A force
has two basic effects on an object. (1) It can change the motion of the object, which is the subject of
Newton’s famous second law (Chap. 5). (2) It can distort the shape of an object such as by stretching,
compressing, or twisting the object.

Types of Forces

A force can be either due to direct contact (contact force) such as a hand pushing a block or a
rope dragging a box or due to influence from afar (action at a distance) such as the gravitational pull
of the earth on a satellite or the push of one magnet on another not in contact with it. On the human
scale there are many different forces of either type. But on the atomic scale there are only four
fundamental forces: gravitational, electromagnetic, weak nuclear, and strong nuclear—all of them
actions at a distance. :

The Resultant of a System of Forces

The vector sum of the forces acting on an object is called the resultant force on the object. The
laws of nature are such that when two or more forces are acting at the same point in an object, they can
be replaced by their resultant acting at the same point, which will have the same exact effect on the
object as the original set of forces.

Problem 4.1. In Fig. 4-1(a) two forces are shown acting at a point in an object. Find the magnitude
and direction of the single force that can replace those two forces and have the exact same effect.

Solution

In Fig. 4-1(b) the resultant R and the replaced forces F, and F, (in dashed form), as well as F,
shifted parallel to itself so that it is tail to head with F; (see Sec. 3.1). Since the two original forces are at
right angles to each other, we can use the pythagorean theorem to obtain the magnitude of the resultant
force: R* = F\* + Fy* = (30 Ib)* + (40 1b)> = 2500 Ib2 Taking the square root, we obtain R = 50 Ib.
To get the direction of R we determine its angle 6 with the horizontal. We have tan 6 = opposite/
adjacent = 40/30 = 1.33 or § = 53°. Thus R has magnitude 50 Ib and acts at an angle 53 ° above the
horizontal.
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Fig. 4-1

Line of Action

When a force acts at a point in an object, one can draw an imaginary line through that point and
parallel to the force. This is called the line of action of the force.

A rigid body refers to an object that doesn’t change its shape when forces act on it. No real object
is truly rigid, but the concept is a good approximation for stiff objects. In studying the relation of force
and motion we will usually assume that we have rigid bodies. While in general the effect of a force on
a rigid body depends on where it acts, a force acting on a rigid body can be applied anywhere along its
line of action and still have exactly the same effect.

Problem 4.2, In Fig. 4-2(a) we have the same two forces acting on a rigid body as in Fig. 4-1(a), but
now they are acting at different points B and C. Can one still replace these two forces by a single
resultant force that has exactly the same effect on the motion of the rigid body and, if so, give an
example of such a resultant force?

Fig. 4-2 ®)
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Solution

The answer is yes. Since F; and F, can be moved anywhere along their lines of action without
changing their effects, we can imagine moving them so that they both act at point D, the intersection of
their lines of action (Fig. 4-21(5)). They can then be replaced by their resultant R, acting at the same
point D. As already calculated in Problem 4.1, R is 50 1b acting 53 ° above the horizontal. Furthermore,
this resultant force can be moved or slid anywhere along its own line of action without change in effect.
Figure 4-2(b) shows the resultant R acting at point E, where it still has exactly the same effect as the
original two forces (shown in dashed form) that it has replaced.

42 EQUILIBRIUM

Translational motion is the motion of the object as a whole through space, without regard to how
it spins on itself. The translational motion of a very small object, idealized as a particle, is just the
motion of the particle along its path. For a large, irregular body it is less clear what is meant by the
motion of the object as a whole or the path of the object through space. Fortunately, the idea can still
be defined precisely as the motion of a special point of the object, called the center of mass. For
simple uniform symmetric objects, such as a disk, a sphere, a rod, or a rectangular solid, the center of
mass is at the geometric center of the object (see Sec. 8.4).

Problem 4.3. Describe the translational motion of the board eraser in Fig. 4-3.
Solution

The dashed parabolic line represents the path followed by the center of mass; it thus represents the
translational motion of the eraser.

Fig. 4-3

Rotational motion is the spinning motion of an object, without regard to the motion of the object
as a whole. Often rotational motion refers to the spinning of an object about a fixed axis, such as the
spinning of a wheel on a shaft, but it can also refer to the spinning of an object on itself as the object
as a whole moves through space.

Problem 4.4. How does one describe the rotational motion of the board eraser from left to right in
Fig. 4-37

Solution

The change in the angular orientation of the eraser represents its rotational motion. Note that the
eraser has rotated clockwise through 180°.
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Problem 4.5. Describe the translational and rotational motion of the cratered moon around the
planet in Fig. 4-4.

Solution

The circular dashed line represents the translational motion of the moon. This moon has no
rotational motion since its orientation does not change. The moon, in effect, stays parallel to itself
throughout the motion.

Translational equilibrium means that the object as a whole, aside from rotation, has uniform
translational motion, that is, its center of mass is either at rest or moving at constant speed in a straight
line.
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Problem 4.6. Does the motion of the eraser in Fig. 4-3 or of the moon in Fig. 4-4 correspond to
translational equilibrium?

Solution

No. The translational motion of the eraser is a parabolic arc and that of the moon is a circle, whereas
for translational equilibrium the motion must be in a straight line. An example of approximate
translational equilibrium would be a block sliding on an ice-covered lake; the block would move in a
straight line without slowing down.
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Rotational equilibrium means that the object—whether it is undergoing translational motion or
not—is either not spinning or it is spinning in a uniform fashion. For simple symmetric objects this
means spinning at a constant rate about a fixed direction.

Problem 4.7. Does the motion of the eraser in Fig. 4-3 and of the moon in Fig. 4-4 correspond to
rotational equilibrium?

Solution

If the eraser were tumbling at a uniform rate, it would indeed be in rotational equilibrium; that, in
fact, is a good approximation to what happens if air resistance is not an important factor. The moon is
certainly in rotational equilibrium, since we are shown that the moon does not rotate at all.

A Frame of Reference refers to the “framework” that defines the coordinate system in which one’s
measurements and observations are made. If a coordinate system is fixed to the earth and another one
is fixed to a rotating merry-go-round, one is going to observe things differently in each. Each of these
coordinate systems is fixed in a different frame of reference.

An inertial frame of reference, by definition, is a frame of reference in which a completely isolated
object (no forces) will appear to be in both translational and rotational equilibrium. For most purposes
the earth can be considered an inertial frame; that is only an approximation, however, because the
earth spins on its axis—although it is a very slow spin—once every 24 h. The importance of inertial
frames is that Newton’s laws hold only in such frames, and most of the other laws of physics take on
simpler form when described in such frames. We will always assume that we are describing things in
an inertial frame of reference unless otherwise indicated.

43 NEWTON’S FIRST LAW

A totally isolated object (no forces) is in both translational and rotational equilibrium in an inertial
reference frame. However, even rigid bodies that do have forces acting on them can be in either
translational or rotational equilibrium, or both, under suitable conditions. The condition for
translational equilibrium is the statement of Newton § first law, also known as the law of equilibrium.
We give here some simple cases.

Equilibrium with Only Two Forces Acting

If the two forces F; and F, (see Fig. 4-5) are equal in magnitude and opposite in direction (that is,
F, + F, = 0), then the object is in translational equilibrium. If in addition the two forces act along a
common line of action (collinear forces), as in Fig. 4-5(b), then the object is also in rotational
equilibrium.

Note. 1t is also possible to have rotational equilibrium without translational equilibrium, a
situation that will be discussed in a later chapter.

Problem 4.8. A uniform rod is connected to two cords that exert the only forces on the rod, as
depicted in Fig. 4-6; (i.e., we assume there is no pull of gravity on the rod). For each case determine
whether the rod is in translational equilibrium. If so, can it also be in rotational equilibrium?
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F,=10N

(@ ®)
Fig. 4-5

30 30

@ ®) ©
Fig. 4-6

Solution

Since the cords are flexible and exert a force only when they are taut, they can only pull along their
length, as is depicted by arrows. Case () cannot correspond to translational equilibrium because the two
forces are not equal and opposite (F;, + F, # 0), Case (b) can correspond to translational equilibrium, if’
the two forces have equal magnitude, but it cannot represent rotational equilibrium because the two
forces don’t have a common line of action. Case (c) corresponds to both translational and rotational
equilibrium if the two cords pull with forces of equal magnitude.

Equilibrium with Three Forces Acting

If the vector sum of the three forces is zero (F, + F, + F3 = 0), then the object is in translational
equilibrium. If in addition the lines of action of the three forces pass through a common point, then
the object is in rotational equilibrium as well. Such a system of forces is called concurrent.

Problem 4.9. Consider the same cases as in Problem 4.8, except now take into account the weight of
the rod. Which of the cases can now correspond to equilibrium?

Solution

Since the rod is uniform, we can assume the weight is a single force acting downward at its center
(dotted arrows in Fig. 4-6). Now only case (z) can correspond to translational equilibrium since only in
that case could the vector sum of the three forces add up to zero if the magnitudes were suitable (see
Problem 4.10). The rod would also be in rotational equilibrium, because, by symmetry, the three forces
are concurrent. In neither case (b) nor (c) could the three vector forces add up to zero since the weight is
perpendicular to the vector sum of the two other forces and could never be balanced by them.

Problem 4.10. For case (a) of Problem 4.9, if the weight is 100 N, find the force exerted on the rod
by each of the two cords if the rod is in equilibrium () by geometric means; (b) by the component
method.
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Solution

(@) Newton’s first law tells us that the resultant of the three forces acting on the rod must be zero. In
Fig. 4-7(a) we redraw the rod as an isolated object and include only the forces acting on it (body
diagram). The condition F; + ¥, + F; = 0 implies that the three vectors, drawn head to tail, form a
closed triangle. As can be seen in Fig. 4-7(b), the triangle is equilateral for our case, so
F,=F,=F,=100N.

F, Fy

—_— = - F

@ ®) ©
Fig. 4-7

(b) We now solve the problem algebraically. Choose the x axis along the rod and the y axis
perpendicular to the rod at its center. Now slide the vectors parallel to themselves to the origin, for
easier visualization Fig. 4-7(c). Since the vector sum of the three forces equals zero, we must have
for the components

Fio+Fy+F;=0 and F1y+F2y+F3y:0
From Fig. 4-7(c), we have

Fiy, = Fic0s30° Fy, = —F,co0s30° F,=0
F\y, = Fysin30° F>, = F>5in30° F3, = —100N

Substituting into the x-component equation,
Frcos30° —Fyc0830°+0=0 or F=FK
Similarly, the y-component equation gives
Fisin30° + F,sin30° — 100N =0 or 0.5F; +0.5F, = 100N
Using F; = F, in the y-component equation gives
0.5F; + 0.5F, = 100N or Fi=100N=F,
While this method of solving a vector equation seems more cumbersome than the geometric

method, it can be applied to more general cases where the geometric approach is too difficult to
use.
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Equilibrium with Any Number of Forces

For the general case of any number » of forces, we again have two conditions for equilibrium. The
first is the condition for translational equilibrium, or Newton s first law, which says that the vector sum
of all the forces is zero: £F; = 0. For small objects or particles, where rotation can be ignored, it is the
only condition of equilibrium. For extended objects, the second condition, for rotational equilibrium,
is again needed. The general case of rotational equilibrium will be discussed in a later chapter. The
rest of this chapter is concerned only with translational equilibrium.

44 NEWTON’S THIRD LAW

This law, otherwise known as the law of action and reaction, states that if some object 4 exerts a
force F,, on object B, then object B exerts a force Fy, on object 4 that is equal in magnitude and
opposite in direction: Fy,, = —F,,. The law holds both for contact forces and for action-at-a-distance
forces.

Problem 4,11, Consider a book lying at rest on a horizontal table.
(@) What are the forces on the book?
(b) What is the reaction force to each of these forces?
(¢) What effect do the reaction forces have on the book?
Solution

(a) There are two forces acting on the book: its weight (the downward pull of gravity toward the center
of the earth) and the force exerted upward on the book by the tabletop.

(b) The reaction to the weight is an upward pull of equal magnitude exerted on the earth by the book.
The reaction to the table’s force is a downward push of equal magnitude on the table by the book.

(¢) The reaction forces have no effect on the book! By definition, any effect on the book is represented
by a force on the book. The reaction forces act on the earth and on the table—mnot on the book.

Problem 4.12. An elephant and a teenager are having a tug-of-war, as shown in Fig. 4-8(a). Does
Newton’s third law imply a draw?

(@) ®
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Solution

No. Unless the elephant is very weak, the teenager will definitely lose. It is true that the force the
elephant exerts on the teenager F., is equal and opposite to the force the teenager exerts on the elephant
F., but the motion of either “object” depends on the resultant of all the forces acting on it. Both the
teenager and the elephant are pushing the ground forward with their feet, and in each case the ground
exerts an opposite reaction force. The situation is depicted in Fig. 4-8(), where Fy and F,, represent the
horizontal forces exerted by the ground on the teenager and on the elephant, respectively. Thus, for
example, suppose that Fy; = Fi = 250 Ib. We might have Fg, = 100 b and F,e = 650 Ib. Then a net
force of 150 1b acts on the teenager to the left, and he moves leftward. Similarly, a net force of 400 Ib
acts on the elephant to the left, and the elephant also moves leftward. The next section deals with friction
and shows why it is reasonable to assume that Fge > Fiy.

Tension

At any given point in a taut rope (or cord, string, thread, or cable) we can ask: With what force
does the segment of rope on one side of the point pull on the segment of rope on the other side?
Consider the situation in Fig. 4-9(a), where a girl pulls on one end of a horizontal rope with a force F,
while the other end is attached to the wall. We consider an arbitrary point p of the rope that divides it
into two segments 4 and B, as shown. Figure 4-9(b) shows the segments as separate bodies, with the
horizontal forces on each drawn in. By Newton’s third law, the forces with which the two segments
pull on each other F,, and Fy, are equal in magnitude and opposite in direction. The tension T at the
point p is the magnitude of either of these forces: T = Fap = Fa. Since each rope segment is In
equilibrium, we also have F, = F, and F,, = Fy,, where Fy, is the force of the wall on the rope. Thus
all these forces have the same magnitude 7. Furthermore, since point p was chosen arbitrarily we
conclude that the tension is the same everywhere in the rope.
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Fig. 4-9
“Weightless” Ropes

In general these results are true only for a horizontal rope in equilibrium. If the rope were vertical,
with one end attached to the ceiling and the other end pulled down by the gitl, then the weight of each
segment of the rope would have to be taken into account, and the tension at a point p of the rope would
equal neither the force with which the girl pulled down nor the force with which the ceiling pulled up.
Indeed, the tension would vary from point to point in the rope. The same would be true if we had a
horizontal rope that was not in equilibrium, because the forces applied to either end would not balance
out.

=\
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There is, however, one circumstance where there is a common tension throughout the rope, and
this tension always equals the magnitude of the forces acting at the ends of the rope—whether the rope
is horizontal or vertical, whether the rope is in equilibrium or not. This is the circumstance where the
rope is weightless. In most problems one characterizes such a rope as a cord, string, or thread to
indicate its “lightness.” Obviously no cord is completely weightless, but if it is very light in
comparison to the other objects in the problem, it can be assumed weightless without much error.

Problem 4.13. A block of weight w = 15 N hangs at the end of a (weightless) cord suspended from
the ceiling. What is the tension in the cord, and with what force does the cord pull down on the
ceiling?

Solution

The tension is the same at all points of the cord and is equal to the magnitude of the force pulling at
either end. Since the block is in equilibrium under the action of two vertical forces (the weight
downward and the pull of the cord upward), these two forces must have the same magnitude. Hence the
upward pull of the cord = 15 N. By Newton’s third law the magnitude of the pull of the block downward
on the cord is also 15 N, so 7= w = 15 N. The tension T also equals the magnitude of the pull of the
ceiling on the cord, which by Newton’s third law equals the pull of the cord downward on the ceiling.
Thus the downward pull of the top of the cord on the ceiling is the same as the downward pull of the
block on the bottom of the cord. Thus we see that a weightless rope transmits an applied force from one
end to the other.

4.5 FRICTION

Friction is the rubbing force between two objects whose surfaces are in contact. The force of
friction always acts parallel to the touching surfaces. By Newton’s third law each surface exerts a
frictional force that is equal in magnitude and opposite in direction to that exerted by the other. The
magnitude of the frictional force exerted by each surface on the other depends on how tightly the two
surfaces are pressed together.

Normal Force

The force responsible for this “pressing together” is called the normal force because it acts
perpendicular to the two surfaces. By Newton’s third law each surface exerts a normal force that is
equal in magnitude and opposite in direction to that exerted by the other. Figure 4-10 indicates the
frictional and normal force on each object when a block is in contact with an inclined plane. The
frictional force (parallel to the surface) and the normal force (perpendicular to the surface) acting on a
surface can always be thought of as the components of the overall force acting on that surface due to
the other surface in contact with it.

Static Friction

When two surfaces are at rest with respect to one another, the frictional force each exerts on the
other always opposes any tendency to relative motion. The frictional force on an object adjusts itself
in magnitude and direction to oppose and counterbalance any other forces on the object that would
tend to make the object start to slide. It varies, as needed, from zero magnitude up to some maximum
value to stop such slippage. Such a frictional force is called a static friction force (f,). The maximum
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(Body diagrams)

Fig. 4-10

static friction force f; max that one surface can exert on another is proportional to the normal force N
between the surfaces: f; max = sV, Where N is the magnitude of the normal force, and pg is a
proportionally constant, called the coefficient of static friction, that depends on the nature of the two
surfaces. It is possible to force one object to slide over the other by applying a parallel force to one of
the objects that is larger than N, the maximum possible static friction force.

Problem 4.14. A book of weight w = 10 N rests on a horizontal table top, as shown in Fig. 4-11(a),
and a horizontal force F is applied to it. If the coefficient of static friction y, between the book and the
tabletop is 0.25, calculate (a) the normal force exerted by the tabletop on the book, and (b) the
maximum value of the static friction force.

@ ®)
Fig. 4-11

Solution

(@) Since the book is in equilibrium, the sum of the forces acting on it must equal zero. Figure 4-1 1(d)
shows the body diagram for the book with all the forces acting on it. The frictional force is f;, and
the normal force is N. Noting that f, and F have no y components, from the condition that the sum
of the y components equals zero we have N — 10 N =0, or N= 10 N.

() The maximum value attainable by the static friction force is
fomax = 4N = (0.25) (10N) = 2.5N

Problem 4.15.

(a) In Problem 4.14, if the magnitude of the applied force is F = 2.0 N, what is the magnitude and
direction of the frictional force on the book?
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(b) Whatif F=1.0N; 0 N?
(c) What is the biggest value that F can be before the book starts to slide?

Solution

@

®

©

The frictional force opposes the tendency to motion, so it is in the direction opposite to F, as shewn
in Fig. 4-11(b). The magnitude of the frictional force adjusts itself to keep the book at rest, which
in this case means f; = F = 2.0 N. This value is possible, since it is smaller than the maximum
found in Problem 4.14(b).

If F=1.0N, then, by the same reasoning as in part (¢), we have /; = 1.0 N in the direction
opposite to E. If F =0, then f; = 0, and there is no frictional force at all.

If F is bigger than f; ..., then the frictional force cannot rise to match F and maintain equilibrium.
Thus F' = 2.5 N is the limiting value; beyond this value equilibrium cannot be maintained, and the
book starts to move.

Kinetic Friction

Once two surfaces are in motion relative to one another, the frictional force, now called kinetic

friction (f;), acting on a surface is always in a direction opposed to the velocity of that surface. To a
good approximation, its magnitude is independent of the magnitude of the velocity and is again
proportional to the normal force between the two surfaces. Thus it can be expressed as f; = N,
where p, the coefficient of kinetic friction, depends only on the nature of the two surfaces. For any
given pair of surfaces, p; < .

Problem 4.16. Assume the book in Fig. 4-11(a) is moving to the right with speed v.

(@

®)
(©

Now what are the magnitude and direction of the force of friction exerted by the tabletop on the

book?

Does f; depend on the magnitude of the applied force F?

If the book instead moves to the left with speed v, with F still to the right, what are the magnitude
and direction of the force of friction? Assume that y; = 0.2.

Solution

(@)

®)
(©

Once the book is moving the (kinetic) friction is of fixed magnitude, f; = uN. Since we still have
equilibrium in the y direction, we still have the same normal force; Thus f; = (0.2) (10 N) = 2.0 N.
The direction of the kinetic friction force is always opposite to the direction of motion, so it would
be to the left.

No.

Since the normal force is still the same, the value of £, is still 2.0 N. The direction of f; is now to the
right. Note that the direction of f; depends only on the direction of motion and not on the direction
of F.

4.6 CORDS AND PULLEYS

If a (weightless) cord is bent over a pulley, as in Fig. 4-12, there are two idealized situations in

which the tension in the part of the cord on one side of the pulley will be the same as the tension in the
part of the cord on the other side of the pulley.
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(@ )] (©)
Fig. 4-12

1. The surface of the pulley is frictionless so that the cord slides effortlessly over it (frictionless
pulley).

2. The surface of the pulley has friction, but the pulley has no weight and there is no friction
between the pulley and the axle on which it rotates (weightless pulley).

In a problem, being told that the pulley is frictionless and/or weightless (massless) is generally
shorthand for case 1 or case 2, and you can assume as much unless told otherwise.

Problem 4.17. In Fig. 4-13(a), the two blocks are connected by a light rope over a frictionless,
weightless pulley. If the system is initially at rest, will it stay at rest? If so, what is the frictional force
exerted by the table on block 4?

Solution

Figure 4-13(b) gives the body diagrams for the two blocks. For block B, assuming equilibrium, the
y-component equation gives T — W, = 0 or T= W, = 10 N. Since we have a rope and a frictionless,
weightless pulley, the tension is the same on the block-4 side of the pulley, and 7 = 10 N for block 4 as
well.

Vertical equilibrium of block 4 requires that N — W, = 0,or N = W, =30 N. Then the maximum
possible static frictional force is

Js,max = uN = (05) (30N) = 15N

Since T < f; max» the frictional force can balance T and the system remains at rest. The actual frictional
force can be obtained from the equilibrium of block A:

T—f=0 o f=T=I10N
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fs

W,= 10N

(@)

(®)

Fig. 4-13

Problems for Review and Mind Stretching

Problem 4.18. Find the resultant R of the two forces shown in Fig. 4-14.

Solution

R =F; + F,. We choose x and y axes as shown in the figure and use the component method of
addition.

Fi,=0 Fi, = 20N Fy, = —(60N) cos 37° Fa, = —(60N)sin37°
R, =Fi; + F5, =0— (60N) (0.8) = —48N
R, = Fy, + F5, = (20N) — (60N) (0.6) = —16N
R = [(—48)%+(=16)"]"/* = 50.6N

From the signs of its components, R is in the third quadrant. If § is the acute angle that R makes with the
negative x axis,

16 1

= — = — = _40
83 or 6=18

R,

Ry

tan 0 =

Thus R has magnitude 50.6 N and points away from the origin at 18.4 ° below the negative x axis.

=20N

F2=60N

Fig. 4-14
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Problem 4.19. Three forces act on a rigid body, as shown in Fig. 4-15, with their lines of action
passing through the common point B. Find their resultant and its point of application for equilibrium.
Solution '

R =F, + F, + F;. Choose the x and y axes as shown. Then
R, = Fi; + Foy + Fa, = (—50N) cos 30° + (40N) cos 45° + (ON)
= (—50N) (0.866) + (40N) (0.707) = —15.0N
R, = Fy, + Fyy + F3, = (50N) sin30° + (40 N) sin45° + (—=30N)
= (50N) (0.5) + (40N) (0.707) 4+ (—30N) = 23.3N
R=[(-152+(23.3)4)"* = 277N
R is in the second quadrant, with

233

tan 6 = |R,/R,| = 150 or 0 = 57.2 ° above the negative x axis

R can act anywhere along a line of action through B.

F,=40N

Problem 4.20. Refer to Problem 4.18.

(¢) What third force E, must be exerted on the body for it to be in translational equilibrium?

(b) Where must E be applied to give rotational equilibrium as well?
Solution

(@) For translational equilibrium, F; + F;, + E=0, or E=—(F; + F,) = —R. Hence E = 50.6 N,
and E points 18.4 ° above the positive x axis (see Fig. 4-16).

(®)

E must have the same line of action as R; that is, its line of action must also pass through point 4.

Note. The force which, when added to an existing set of forces on an object, will cause the

object to be in equilibrium is called the equilibrant of the set. (The force E in the previous
problem is thus an equilibrant.)
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E=50.6N

18.4°

18.4°

R=506N

L ]
Fig. 4-16

I4
Problem 4.21. Find the equilibrant of the forces in Problem 4.19.

Solution

Here we have the concurrent forces F;, F,, and F; which can be replaced by the single resultant
force R = F; + F, + F; with line of action through point B, as obtained in Problem 4.19. Clearly, to
have equilibrium, the added fourth force, the equilibrant E, must obey E = —R. Thus E = 27.7 N
pointing 57.2° below the positive x axis, with a line of action that must also pass through point B.

Problem 4.22. A block of weight w; = 400 N hangs from a uniform heavy rope of length 3 m and
weight w, = 300 N, as shown in Fig. 4-17(a). Find (a) the force with which the rope pulls on the
block; (b) the tension in the rope 1 m above the contact point with the block; (c) the force with which
the ceiling pulls on the rope.

Solution

In Fig. 4-17(b) we have the body diagrams for the block, the lower third of the rope, and the full
rope, respectively. Each is in equilibrium, and the vector sum of the forces on each equals zero. Since the
forces are all in the y direction, only the equilibrium condition in that direction need be applied.

3m wy, =300 N

Wy

w; = 400N

@ ®)
Fig. 4-17
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(@) For the block, Ty — wy =0, 0or T} = 400 N equals the force of the rope on the block.

(b) For the lower third of the rope, T, — 71 — w' =0, where T, is the contact force of the upper two-
thirds of the Tope on the lower third and is the tension in the rope at that point; 77 is the force of the
block on the rope, given by Newton’s third law as T 1= T,= 400 N; w' is the wéight of the lower
third of the rope, or w’ = 100 N. Thus 7, = 71 + w’ =400 N + 100 N = 500 N.

(c) For the rope as a whole, 75 — T] — wy =0, 0or T3 = T{ + wp = 400 N + 300 N = 700 N, equals
the force of the ceiling on the rope.

Problem 4.23. For the weight-and-strings setup of Fig. 4-18(a), find the tensions T 1, T, and T5.

60°

T2 50°

w=600N

@ ®)
Fig. 4-18

Solution

From the equilibrium of the block, T; = 600 N. Since the knot is in equilibrium, the body diagram,
Fig. 4-18(b), gives T; + T, + T3 = 0. Using the component method, we get

Ty + Tox + T3y =0 — Tpc0s60° + T35in50° =0 or 0.5T, = 0.766T3~

or T, = 1.532 Ts. (A sine appears in the x-component equation because the angle of Ts is giveh relative
to the y axis). Similarly, :

le—{—sz—i—Tg,y——-—T1+T2sin60°+T300550°——-0 or 0.8667, + 0.64373; = 600N
Substituting for 7>, .
(0.866) (1.53273) + 0.6437; = 600N or 1.9707; = 600N or T; =305N
Finally, T, = 1.532T5 = 467 N.

Problem 4.24. A block of weight w = 200 N is pulled along a horizontal surface at constant speed
by a force F = 80 N acting at an angle of 30° above the horizontal, as shown in Fig. 4-19.
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w=200N
“Fig. 4-19

(a) Find the frictional force f exerted on the block by the surface.

(b) Find the normal force N exerted on the block by the surface. ]

(c) Find the coefficient of kinetic friction, 1, between the block and the surface.
Soluﬁon

(@) The four vector forces acting on the block are shown in Fig. 4-19. Sjnce the block is in equilibrium,
their sum equals zero. For the x components we thus have

Feos30°—fi=0 or  f = (80N)(0.866) = 69.3N

"(b) Similarly, for the y compbnents, . ‘
Fsin30°+N—-w=0 or N = 200N — (80N) (0.5) = 160N
Note that the normal force is not equal to the weight even though the block is on a horizontal surface,

because the force F has a vertical component.

© me=fi/N=693/160 = 0.433.

Problem 4.25. A hanging weight w, is connected by a light cord over a frictionless pulley to a block
on a frictionless incline of weight w, = 500 N, as shown in Fig. 4-20. If the block on the incline
moves down at constant speed, what is the weight of the hanging block? How would your answer
change if it were moving up the incline at constant speed?
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Solution

In Fig. 4-20, all the forces on the respective blocks are shown right on the diagram for the system as
a whole. Since both blocks move in straight lines at constant speed, they are each in equilibrium. For the
hanging block, using y components, we have T; — wy = 0, or w; = T. To find 7; we turn to the block
on the incline. We choose x and y axes along the incline and perpendicular to it, respectively. We also
note that the force of the cord on each block has the same magnitude, so 7> = Ty = T, since the cord is
light and the pulley is frictionless. Then, for the x-component equilibrium equation we get

T—wysinf=0 or T=(500N)(sin37°)=300N

Then from our earlier result w, = T = 300 N. Note that we did not need to solve the y-component
equilibrium equation for the block on the incline to solve for Tand w;. This is because the y-component

« equation gives us the normal force N, which does not affect the x-component equation when there is no
friction. If the block were moving up the incline, the blocks would still be in equilibrium under the
action of the same forces, so the answer would remain the same.

Problem 4.26. Suppose that in Problem 4.25 there was friction between the block and the incline
and that the coefficient of sliding friction was uz = 0.3, but all the other data in the problem remained
unchanged. Find the weight of the hanging block, wy, if the other block moves at constant speed
(a) down the incline; (b) up the incline.

Solution

(@) We can use Fig\. 4-20 with the modification that there is an additional force on the block on the
incline, a frictional force of magnitude f; opposing the motion of the block and hence pointing
parallel to the incline in the upward direction. From the rules for friction we have f; = pV, where
N is the normal force exerted on the block by the incline. Following the reasoning of Problem 4.25
we now have for the x components

T+ N —wysin37° = or T = (500N) (0.6) — 03N
For the y components

N —wyc0837° =0 or N = (500N)(0.8) =400N
¢
Substituting into the previous equation we have

T = (500N) (0.6) — 0.3(400N) = 300N — 120N = 180N

Since the hanging block obeys w; = 7, we have our result, w; = 180 N.

(b) If the block is moving up the incline at constant speed, we proceed as before, noting that the
frictional force is now directed down the incline although it still has the same magnitude f; = .
Furthermore the y-component equation for the tlock on the incline is unchanged, so we still have
"N = 400 N and f; = 0.3(400 N) = 120 N. The x-component equation changes only in that the sign
of the x-component of the frictional force changes, and we get

T — N —w;sin37° =0 and T =300N+ 120N = 420N
Finally, w; = T =420 N.

-«

Problem 4.27. For the setup in Fig. 4-18(a)—first discussed in Problem 4.23—the breaking point of
the two cords attached to the wall and ceiling is 1500 N. How heavy can the block be without one of
the cords snapping? Assume the cord attached to the block can handle any weight.
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Solution

We first determine which of the two cords will reach a tension of 1500 N first. To do this we recall
from Problem 4.23 that equilibrium in the x direction requires

T35 sin 50 ° = T3 cos 60 ° or 0.76673 = 0.50T, or 3=0.653T, <D

Id
Clearly T3 is always less than 75, and hence T, will reach 1500 N first. We now set 7 = 1500 N; from
above, this immediately yields 75 = 0.653 (1500 N) = 980 N. We can now determine the corresponding
weight w of the block using the equilibrium equation in the y direction:

w=Ti = T55in60° + 73 c0s 50° = (1500N) (0.866) + (980N) (0.643) = 1929 N

Supplementary Problems

Problem 4.28.
(@) The earth’s moon revolves about the earth once a month and always keeps the same side facing the earth.
Describe the translational and rotational motion of the moon.
(b) Is the moon in translational and/or rotational equilibrium?
Ans.  (a) The moon as a whole translates in a circular orbit about the earth; it rotates on its axis
once a month.

(b) The moon is not in translational equilibrium; if the moon’s monthly rotation on its axis
is uniform (it is, approximately), then the moon is in rotational equilibrium.

Problem 4.29. An automobile travels in a straight line with no skidding.

(@) If the automobile travels at constant speed, are its wheels in translational and/or rotational equilibrium?

(b) If the automobile accelerates from 0 to 60 mph, are its wheels in translational and/or rotational
equilibrium?

() Is a bit of chewing gum on the rim of a wheel of the automobile in translational and/or rotational
equilibrium for the case of part (a) or part (b)?

Ans. (a) In both; (b) in neither; (c) not in translational equilibrium for either case; the bit of gum
goes through one rotation every time the wheel makes one complete turn. For part (a) it is in
rotational equilibrium, while for part (#) it is not. ,

V Problem 4.30. A uniform rod of weight 100 N is acted on by a force F, as shown in Fig. 4-21. What force F )
must be added to the rod to ensure translational equilibrium?

Ans.  56.6 N at an angle of 58.0 ° above the negative x axis

\/ Problem 4.31. In Fig. 4-22(a), assume the somewhat artificial condition that the strut is weightless and the
wall is frictionless. The cord makes an angle § = 37 ° with the strut.

(@) What are the conditions imposed on T and N if the strut is to be in translational equilibrium?

(b) Can the strut be in rotational equilibrium under the circumstances shown? Give your Justification.

Ans. (@) T=83 N, N =66 N; (b) No. The three forces cannot possibly be concurrent.
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F =60N

(oo

w=100N

Fig. 4-21

Y

@ ®)
Fig. 4-22

Problem 4.32. Assume the same situation as in Problem 4.31, except that the weight now hangs from the end
as shown in Fig. 4-22(b).

(a) Find the values of T'and N for translational equilibrium.
(b) Is the strut now in rotational equilibrium and if so why?

Ans. (a) The forces are as before: =83 N, N =66 N.

(b) Yes. If the forces are as in part (a), then the strut is also in rotational equilibrium since
the three forces are concurrent.

\/ Problem 4.33. A block weighing 200 N is suspended from the ceiling by means of three light cords joined in
a knot(Fig. 4-23). Find the tensions in the cords and the forces the cords exert on the ceiling.

Ans. Ty =200N, T, =104 N, 75 =146 N; 104 N and 146 N, downward along the cord
directions

\,/ Problem 4.34. A block slides down a 30° incline at constant speed. Find the coefficient of kinetic friction.
Ans.  pi = 0.58 ‘
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Fig. 4-23

/
%/ Problem 4.35. The same block as in Problem 4.34, when placed at rest on the incline, does not move. When
the angle of inclination is increased by 10°, the block starts to slide. What is the coefficient of static friction?

Ans. pu,=0.84

A

WA Problem 4.36. The block in Problem 4.34 is now connected to a hanging block by means of a light cord over
\/ ¥ africtionless pulley (Fig. 4-24). If the block on the incline weighs 30 N, what must be the weight of the hanging
block if it falls at constant speed?

Ans. 30N

Fig. 4-24

Problem 4.37. Suppose that for the situation of Problem 4.26 (Fig. 4-20) the block is initially at rest and the
coefficient of static friction is y, = 0.4. For what range of weights w; will the block remain at rest?

Ans. 140 to 460 N

Problem 4.38. If the block in Problem 4.24 was initially at rest and y, = 0.6, how big would the applied force
have to be to just get the block moving?

Ans. F=103 N

Problem 4.39. Suppose the rope in Problem 4.22 has a weak spot at its midpoint so that it will break if the
tension at that point reaches 2000 N. What is the heaviest block that can be suspended by the rope?

Ans. 1850 N
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Lo

\ / Problem 4.40. A block is pushed along a tabletop at constant speed by a force acting 20 ° below the horizontal
7 asin Fig. 4-25(a). If the weight of the block is 100 N and the coefficient of kinetic friction is g = 0.30, find the
magnitudes of (@) the pushing force, (b) the normal force due to the table.

Ans. (@) 358 N; (b) 112N

H =03
(a)

®)
Fig. 4-25

I

\/ Problem 4.41. Repeat Problem 4.40 if the block is being pulled at constant speed by a force acting at an angle
of 20° above the horizontal [Fig. 4-25(b)].

Ans. (a) 287 N; () 9O N

/ Problem 4.42. Find the tensions T; and T, in the two cords for the equilibrium situation depicted in
Fig. 4-26(a).

Ans. T7=80N; T, =41 N

\;ﬁ ,/‘" Problem 4.43. Repeat Problem 4.42 for Fig. 4-26(b).
Ans. Ty =139 1b; T, = 160 1b

z f
Y Problem 4.44. Repeat Problem 4.42 for Fig. 4-26(c).
Ans. T1 =253 N; T, =288N

Problem 4.45. What is the minimum coefficient of static friction between table and block for which the blocks
in Fig. 4-27 will remain in equilibrium? What is the tension 77

Ans. 0.29; 115N

Problem 4.46. A 50-N weight is hung symmetrically from the ceiling by two light cords, as shown in
Fig. 4-28. The breaking strength of the cords is 1200 N. What is the minimum angle 6 at which the weight can
be hung without the cords breaking? (Assume the vertical cord is very strong.)

Ans. 1.19°

" Problem 4.47. In Fig. 4-26(b) the breaking point of the horizontal cord is 1000 Ib, while that of the cord
attached to the ceiling is 1200 1b.
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80N

(a) 80N

)]

30°

80".‘

100N

(©
Fig. 4-26

100N L/

Fig. 4-27

(a) If the weight of the hanging block is steadily increased, which cord will snap first?
{b) What is the maximum weight that can be supported by the cords?

Ans. (a) The horizontal cord; (b) 577 Ib

Problem 4.48. Referring to Fig. 4-20, suppose y; = 0.50 and w;, = 900 N. Find the weight w, such that the
block just slides (@) up the incline at constant speed; () down the incline at constant speed.

Ans. (a) 900 N; (b) 4500 N
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50N
Fig. 4-28

\/ Problem 4.49. A child pushes a block of weight w = 300 N against a wall with a force Fécting upward at 45°
to the horizontal to stop it from falling. The situation is shown in Fig. 4-29. p; = 0.6 between the block and the
wall.

(@) What is the minimum value of F for which the block will not fall?
(b) Would the child have an easier time of it by instead exerting a force in the horizontal direction?

Ans. (@) 265 N; (b) no. The minimum force would now be 500 N.

U, =0.6

Fig. 4-29



