MATH LEVEL 2 LESSON PLAN 4

FRACTIONS

© 2018 Copyright Vinay Agarwala, Checked: 1/20/18

Section 1: Unit & Fractions

1. The word fraction means "a broken piece". We use fractions to describe a quantity between 0 and 1.

We can break a cookie into *two halves, three thirds, four fourths, five fifths, six sixths, seven sevenths,* and so on. Hence, when a unit is divided into equal parts, the parts are named from the number of parts into which the unit is divided.

2. In 1 cookie there are 2 halves; then, in 3 cookies there are 3 x 2 = 6 halves. Therefore 3 units are reduced to 6 halves.

EXAMPLE: In 4 apples, how many thirds? In 1 apple there are 3 thirds; then in 4 apples there are $4 \times 3 = 12$ thirds.

EXAMPLE: Reduce 3 to fifths. In 3 there are $3 \times 5 = 15$ fifths.

© EXERCISE

- 1. If 4 apples, how many halves?
- 2. In 5 cookies, how many fourths?
- 3. In 7 pizzas, how many sixths?

- 4. Reduce 4 to sevenths.
- 5. Reduce 8 to tenths.
- 6. Reduce 6 to eights.

Answer: (1) 8 halves (2) 20 fourths (3) 42 sixths (4) 28 sevenths (5) 80 tenths (6) 48 eighths

Section 2: The Unit Fraction

- 3. When a unit is divided into smaller parts, it gives unit fractions of the size half, one-third, one-fourth, one-fifth, one-sixth and so on. We can count using these unit fractions as one-half, one-third, two-thirds, one-fourth, two-fourths, three-fourths, one-fifth, two-fifths, three-fifths, four-fifths, and so on.
- 4. The more parts we divide a unit into the smaller is the unit fraction. Therefore, one-third is smaller than one-half, one-fourth is smaller than one-third, one-fifth is smaller than one-fourth, and so on. The unit fractions provide us with different sizes to "count" quantities less than one.
- 5. By dividing one unit into smaller and smaller parts, and then by counting these parts, we can define any quantity between zero and one. Thus, a fraction is a device to express any quantity between zero and one.
- 6. We express the unit fraction of one-fourth as follows.

The quotient of 1 divided by 4 is one-fourth. But since it is a single number, we call the top and bottom parts as 'numerator' and 'denominator'.

The unit fractions are:

One-half	=	1 ÷ 2	=	1 2	
One-third	=	1 ÷ 3	=	<u>1</u> 3	
One-fourth	=	1 ÷ 4	=	<u>1</u> 4	And so on

© <u>EXERCISE</u>

1. What is the largest unit fraction?

2. What is the smallest unit fraction?

Answer: (1) One-half (2) As small as you want but not zero.

Section 3: The Proper Fraction

- 7. A proper fraction is a unit fraction or multiples of unit fraction that are less than 1. Therefore, proper fractions made of fifths are: one-fifth, two-fifths, three-fifths and fourfifths. Five-fifths is not a proper fraction because it is equal to 1.
- 8. You get a proper fraction when you divide a smaller number by a larger number.

EXAMPLE: Divide 3 cookies equally among 4 people.

We first divide a cookie into 4 fourths. Each person gets a fourth from that cookie. Since there are three cookies, each person gets three-fourths.

three-fourths

Three-fourths is written as follows:

Three-fourths is a multiple of the unit fraction one-fourth.

9. In a proper fraction the numerator is less than the denominator.

© EXERCISE

- 1. If an orange is cut into 8 equal parts, what fraction will express 5 of the parts? Answer: five-eighths, or 5/8
- 2. Write the following fractions.
 - (a) Three-sevenths
 (b) Five-ninths
 (c) Six-tenths
 (d) One-twelfth
 (e) Two-thirteenths
 (f) Nine-sixteenths
 (g) Eleven-twentieths
 (h) Fourteen-Twenty-ninths
 (i) Thirty-one-ninety-thirds

Answer: (a) 3/7 (b) 5/9 (c) 6/10 (d) 1/12 (e) 2/13 (f) 9/16 (g) 11/20 (h) 14/29 (i) 31/93

3. Write the following fractions in words.

Section 4: Improper Fraction & Mixed Numer

10. An improper fraction is a number equal to 1 or more than 1. You get an improper fraction when you divide a number by itself or when you divide a larger number by a smaller number.

EXAMPLE: Divide 4 cookies equally among 4 people.

EXAMPLE: Divide 25 cookies equally among 8 people.

The quotient of this division is 3 with a remainder of 1. When we divided the remainder of 1 also by 8, we get an eighth. This makes the quotient "3 and 1/8". This is called a mixed number.

To convert an improper fraction into a mixed number, we simply divide the numerator by the denominator. When we divide the remainder also, we get a mixed number.

$$\frac{7}{5}$$
 = $(7 \div 5$ = 1 remainder 2 = 1 and $\frac{2}{5}$) = $1\frac{2}{5}$

11. In an improper fraction the numerator is equal to or greater than the denominator.

© EXERCISE

1. Describe the following fractions as proper or improper. (a) $\frac{23}{30}$ (b) $\frac{30}{30}$ (c) $\frac{37}{30}$ (d) $\frac{37}{40}$ (e) $\frac{998}{999}$ (f) $\frac{3}{2}$

Answer: (a) Proper (b) Improper (c) Improper (d) Proper (e) Proper (f) Improper

2. Write the quotient for the following inexact divisions as mixed numbers.

(a) 8 ÷ 3	(c) 16 ÷ 5	(e) 20 ÷ 3
(b) 9 ÷ 4	(d) 31 ÷ 7	(f) 19÷6

Answer: (a) 2 & 2/3 (b) 2 & 1/4 (c) 3 & 1/5 (d) 4 & 3/7 (e) 6 & 2/3 (f) 3 & 1/6

3. Reduce the following improper fractions to mixed numbers.

Answer: (a) 1 1/3 (b) 1 7/8 (c) 2 1/5 (d) 4 1/3 (e) 3 9/10 (f) 9

Section 5: Mixed Number to Improper Fraction

12. We may convert a mixed number back to an improper fraction as follows.

EXAMPLE: In 4 1/3 apples, how many thirds?

In 1 apple there are 3 thirds; then in 4 apples there are $4 \times 3 = 12$ thirds. 12 thirds and 1 third are 13 thirds = **13/3**.

 $4\frac{1}{3} = 4$ and $\frac{1}{3} = \frac{12}{3}$ and $\frac{1}{3} = \frac{13}{3}$

In short, multiply the integer by the denominator of the fraction; to the product add the numerator, and under the sum write the denominator.

$$2\frac{2}{5} = \frac{(2 \times 5) + 2}{5} = \frac{12}{5}$$

© EXERCISE

- 1. Describe the following fractions as proper or improper.
 - (a) If 3 1/4 apples, how many fourths?
 - (b) In 5 ¹/₂ cookies, how many halves?
 - (c) In 7 5/6 pizzas, how many sixths?

Answer: (a) 13/4 (b) 11/2 (c) 47/6

2. Express each of the following mixed numbers as improper fractions.

(a) $1\frac{1}{2}$ (b) $1\frac{1}{6}$ (c) $4\frac{3}{5}$ (d) $5\frac{8}{9}$ (e) $5\frac{11}{12}$ (f) s	(a) 1 <u>1</u>	(b) 1 1 6	(c) $4\frac{3}{5}$	(d) 5 8 9	(e) 5 <u>11</u> 12	(f) 9
--	----------------	-------------------------	--------------------	-------------------------	-----------------------	-------

Answer: (a) 3/2 (b) 7/6 (c) 23/5 (d) 53/9 (e) 71/12 (f) 68/7

Section 6: Reducing to Higher Terms

13. A fraction is reduced to higher terms by multiplying both terms by the same number. This does not change its value.

Thus, if both terms of **3/5** are multiplied by 2, the result is **6/10**; in **6/10** there are *twice* as many parts as in **3/5**, but they are only *one-half* as large.

57

14. To reduce a fraction to higher terms, divide the required denominator by the denominator of the given fraction. Multiply both terms of the fraction by the quotient; the result will be the required fraction.

EXAMPLE: Reduce 2/3 to sixths.

$$6 \div 3 = 2$$

 $\frac{2}{3} = \frac{2 \times 2}{3 \times 2} = \frac{4}{6}$

EXAMPLE: Reduce **4/5** to thirtieths.

$$30 \div 5 = 6
\frac{4}{5} = \frac{4 \times 6}{5 \times 6} = \frac{24}{30}$$

EXERCISE

- (a) Reduce $\frac{1}{2}$ to fourths.
- (b) Reduce 5/6 to twenty-fourths.
- (c) Reduce 3/5 to sixtieths.
- (d) Reduce 11/15 to a fraction whose denominator is 135.
- (e) Reduce 16/25 to a fraction whose denominator is 100.
- (f) Reduce 56/87 to a fraction whose denominator is 1305.

Answer: (a) 13/4 (b) 11/2 (c) 47/6 (d) 99/135 (e) 64/100 (f) 840/1305

Section 7: Reducing to Lowest Terms

15. A fraction is reduced to lower terms by dividing both terms by the same number. This does not change its value.

Thus, if both terms of **6/10** be divided by 2, the result will be **3/5**; in **3/5** there are only *one-half* as many parts as in **6/10**, but they are *twice* as large.

16. A fraction is in its lowest terms when the numerator and denominator have no common factors.

For example, the terms of 9/10 have no common factors, because 9 = 3x3, and 10 = 2x5.

17. To reduce a fraction to lowest terms, divide both terms by a common factor. Divide the resulting fraction in the same manner. So continue to divide until a fraction is obtained whose terms have no common factors.

EXAMPLE: Reduce 24/30 to its lowest terms.

The fraction 24/30 is reduced to its lowest terms 4/5.

18. When the terms of a fraction are large, first find the GCF of both terms per section 6 of <u>Factoring</u>. Then divide the terms by their GCF. The resulting fraction will be in its lowest terms.

EXAMPLE: Reduce **8427/10017** to its lowest terms.

The GCF of 8427 and 10017 is 159.

8427	_	8427 ÷ 159	_	53
10017	=	10017 ÷ 159	=	63

The fraction 8427/10017 is reduced to its lowest terms 53/63.

© EXERCISE

Express each of the following mixed numbers as improper fractions.

(a) <u>18</u>	(b) <u>60</u>	(c) <u>30</u>	(d) <u>42</u>	(e) <u>96</u>	(f) <u>126</u>
30	90	45	70	112	198

Answer: (a) 3/5 (b) 2/3 (c) 2/3 (d) 3/5 (e) 6/7 (f) 7/11

Section 8: Reducing to Least Common Denominator

- 19. The least common denominator of two or more fractions is the least common multiple (LCM) of their denominators. For example, 6 is the least common multiple of 2 and 3.
- 20. We find the LCM of the denominators of the fractions per section 7 of <u>Factoring</u>. Then we reduce each fraction to another having this denominator.

EXAMPLE: Reduce 3/4, 5/6, 8/9, and 11/12 to their least common denominator.

The LCM of the denominators 4, 6, 9 and 12 is 36. Each fraction then must be reduced to thirty-sixths.

36÷4 = 9;	<u>3</u> 4	=	<u>3 x 9</u> 4 x 9	=	<u>27</u> 36
36÷6 = 6;	<u>5</u> 6	=	<u>5 x 6</u> 6 x 6	=	<u>30</u> 36
36÷9 = 4;	<u>8</u> 9	=	<u>8 x 4</u> 9 x 4	=	<u>32</u> 36
36 ÷ 12 = 3;	<u>11</u> 12	=	<u>11 x 3</u> 12 x 3	=	<u>33</u> 36

21. Convert a mixed number into improper fraction before applying the above procedure,

© EXERCISE

Reduce the following to their least common denominator.

(a) <u>1</u> ,	<u>2</u> ,	<u>3</u> 4	(d)	<u>2</u> , 5	<u>3</u> ,	<u>6</u> ,	<u>15</u> 18
(b) <u>2</u> ,	<u>5</u> ,	<u>7</u> 9	(e)	2 ,	$\frac{3}{4}$,	<u>5</u> ,	<u>7</u> 12
(c) <u>3</u> ,	<u>5</u> ,	<u>11</u> 16	(f)	$2\frac{2}{3}$	<u>3</u> 5	, 4	, 5 <u>5</u>

Answer: (a) 6/12, 8/12, 9/12 (b) 12/18, 15/18, 14/18 (c) 12/16, 10/16, 11/16 (d) 24/60, 45/60, 40/60, 50/60 (e) 72/36, 27/36, 20/36, 21/36 (f) 80/30, 18/30, 120/30, 175/30

Section 9: Adding Fractions

22. When the fractions have a common denominator, they are parts of the same size. Add the numerators; under the sum write the common denominator.

EXAMPLE: Add **1/5**, **2/5**, and **3/5**.

The sum of 1 fifth, 2 fifths and 3 fifths is 6 fifths. 6/5 is equal to 1 1/5.

 $\frac{1}{5} + \frac{2}{5} + \frac{3}{5} = \frac{6}{5} = 1\frac{1}{5}$

23. When the fractions do not have a common denominator they do not express parts of the same size. Reduce them to least common denominator per Section 8 above. Then add.

EXAMPLE: Add **5/6**, **8/9**, and **11/12**.

The LCM of 6, 9, and 12 is 36.

 $\frac{5}{6} + \frac{8}{9} + \frac{11}{12} = \frac{30 + 32 + 33}{36} = \frac{95}{36} = 2\frac{23}{36}$

24. When adding mixed numbers we may add the integral and fractional parts separately, and their sums then united.

EXAMPLE: Add **2 5/8** and **3 7/12**.

The sum is 6 5/24.

© EXERCISE

(a) 4 +	$\frac{5}{9} + \frac{7}{9}$	(d) $\frac{13}{18} + \frac{8}{15} + \frac{11}{20} + \frac{13}{30}$
(b) <u>3</u> +	$\frac{7}{11} + \frac{8}{11}$	(e) $\frac{7}{12}$ + $2\frac{5}{6}$ + $3\frac{3}{8}$ + $3\frac{4}{9}$
(c) $\frac{2}{3}$ +	$\frac{3}{4} + \frac{5}{6}$	(f) $\frac{2}{3} + 2\frac{1}{2} + 4\frac{1}{5} + 6\frac{1}{3}$

Answer: (a) 16/9 or 1 7/9 (b) 18/11 or 1 7/11 (c) 27/12 or 2 1/4 (d) 403/180 or 2 43/180 (e) 10 17/72 (f) 13 21/30

Section 10: Subtracting Fractions

25. When the fractions have a common denominator, they are parts of the same size. From the greater numerator subtract the less; under the remainder write the common denominator.

EXAMPLE: From 5/7 subtract 2/7.

2 seventh from 5 seventh leaves 3 sevenths.

 $\frac{5}{7} - \frac{2}{7} = \frac{3}{7}$

EXAMPLE: From 3 1/8 subtract 1 3/8.

You may convert them to mixed numbers and then subtract.

26. When the fractions do not have a common denominator they do not express parts of the same size. Reduce them to least common denominator per Section 8 above. Then subtract.

EXAMPLE: From 9/10 subtract 5/6.

The LCM of 10 and 6 is 30.

$$\frac{9}{10} - \frac{5}{6} = \frac{27 - 25}{30} = \frac{2}{30} = \frac{1}{15}$$

EXAMPLE: From 3 7/12 subtract 2 5/8.

We may subtract integral and fraction parts of mixed numbers separately as follows.

$$3\frac{7}{12} - 2\frac{5}{8} = (3-2) + \left(\frac{7}{12} - \frac{5}{8}\right)$$
$$= 1 + \frac{14 - 15}{24}$$
$$= 1 + \left(-\frac{1}{24}\right)$$
$$= 1 - \frac{1}{24}$$
$$= \frac{23}{24}$$

© EXERCISE

Subtract the following.	
(a) $\frac{7}{8} - \frac{5}{8}$	(d) $\frac{16}{21} - \frac{5}{14}$
(b) $4\frac{1}{4} - 2\frac{3}{4}$	(e) $3\frac{1}{2} - 1\frac{2}{3}$
(c) $\frac{1}{2}$ - $\frac{1}{3}$	(f) 5 - $2\frac{2}{3}$
Answer: (a) 1/4 (b) 3/2 (c) 1/6 (d) 17/42	(e) 1 5/6 (f) 2 1/3

Section 11: Multiplying Fractions

27. To multiply fractions, multiply together the numerators of the given fractions for the numerator of the product; and multiply together the denominators of the given fractions for the denominator of the product.

EXAMPLE: Multiply 3/4 by 5/8.

<u>3</u> 4	x	<u>5</u> 8	=	<u>3 x 5</u> 4 x 8	=	<u>15</u> 32

EXAMPLE: Multiply 3/4 by 2/3.

 $\frac{3}{4} \times \frac{2}{3} = \frac{3 \times 2}{4 \times 3} = \frac{6}{12} = \frac{1}{2}$

28. Before multiplying, it is expedient to cancel out the common factors in numerator and denominator as per section 9 of <u>Factoring</u>.

EXAMPLE: Multiply 3/4 by 2/3.

$$\frac{3}{4} \times \frac{2}{3} = \frac{1}{2} \frac{3 \times 2}{4 \times 3} = \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2}$$

EXAMPLE: Multiply 8/27 by 15/16.

$$\frac{8}{27} \times \frac{15}{16} = \frac{\frac{18}{27}}{27} \times \frac{15}{16_2}$$
 (factor out 8)
$$= \frac{1}{927} \times \frac{15}{2}^5$$
 (factor out 3)
$$= \frac{1}{9} \times \frac{5}{2} = \frac{5}{18}$$

29. When multiplying fractions by integers, express integers in the form of fractions.

EXAMPLE: Multiply **3/8** by **2**.

$$\frac{3}{8} \times 2 = \frac{3}{48} \times \frac{2}{1} = \frac{3}{4}$$

EXAMPLE: Determine 3/5 of 35.

Here "of" is translated as multiplication.

$$\frac{3}{5}$$
 of $35 = \frac{3}{15} \times \frac{35}{1}^7 = 21$

30. When multiplying mixed numbers, convert them to improper fractions first.

EXAMPLE: Multiply **2 1/2** by **1 1/2**.

$2\frac{1}{2} \times 1\frac{1}{2}$	<u> </u> =	<u>5</u> 2	x <u>3</u>	=	<u>15</u> 4	=	$3\frac{3}{4}$
------------------------------------	------------	---------------	------------	---	----------------	---	----------------

EXAMPLE: Determine 1 3/5 of 1 9/16.

$$1\frac{3}{5} \times 1\frac{9}{16} = \frac{18}{15} \times \frac{25}{16_2}^5 = \frac{5}{2} = 2\frac{1}{2}$$

© EXERCISE

Multi	ply t	he	followi	ing.					
(a)	<u>3</u> 8	x	<u>4</u> 9		(d) 7 <u>7</u> 8	×	9 <u>1</u> 7		
(b)	<u>18</u> 35	x	<u>7</u> 9		(e) <u>5</u>	of	24		
(c)	<u>5</u> 3	x	9 11 ×	<u>33</u> 45	(f) 1 <u>1</u>	x	1 <u>1</u> 5	x	1 7 8

Answer: (a) 1/6 (b) 2/5 (c) 1 (d) 72 (e) 15 (f) 3

Section 12: Division of Fractions

Multiplicative inverse of $4 = \frac{1}{4}$; $4 \times \frac{1}{4} = 1$ $8 \div 4 = 2$; $8 \times \frac{1}{4} = 2$

32. The multiplicative inverse of a fraction is obtained by interchanging its numerator and denominator.

Multiplicative inverse of
$$\frac{3}{2} = \frac{2}{3}$$

Multiplicative inverse of $\frac{23}{75} = \frac{75}{23}$
Multiplicative inverse of $\frac{1}{2} = 2$

33. Division by a fraction is the same as multiplication by its multiplicative inverse.

EXAMPLE: Divide 9/16 by 3/8.

$$\frac{9}{16} \div \frac{3}{8} = \frac{39}{216} \times \frac{8}{31} = \frac{3}{2} = 1\frac{1}{2}$$

EXAMPLE: Divide 1/2 by 1/2.

$$\frac{1}{2} \div \frac{1}{2} = \frac{1}{2} \times \frac{2}{1} = 1$$

EXAMPLE: Divide 2 by 1/5.

$$2 \div \frac{1}{5} = \frac{2}{1} \times \frac{5}{1} = 10$$

34. When dividing mixed numbers, convert them to improper fractions first.

EXAMPLE: Divide 6 2/5 by 2 2/15.

$$6 \frac{2}{5} \div 2 \frac{2}{15} = \frac{32}{5} \div \frac{32}{15} = \frac{32}{5} \div \frac{32}{15} = \frac{32}{5} \times \frac{15}{32} = \frac{3}{1} = 3$$

35. What part one number is of another is found by division.

EXAMPLE: 1 is what part of 2? One is 1/2 of 2; for 1/2 of 2 is 2/2 or 1. <u>1</u> 2 1÷2 = EXAMPLE: 2 is what part of 3? $2 \div 3 = \frac{2}{3}$ **EXAMPLE:** ¹/₂ is what part of 3? $\frac{1}{2} \div 3 = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ EXAMPLE: 2/3 is what part of 3/4? $\frac{2}{3} \div \frac{3}{4} = \frac{2}{3} \times \frac{4}{3} = \frac{8}{9}$ © EXERCISE 1. Divide the following. (a) $\frac{3}{7} \div \frac{4}{7}$ (d) $5\frac{5}{7} \div \frac{10}{21}$ (b) $\frac{8}{15} \div \frac{8}{9}$ (e) $8\frac{1}{4} \div 3\frac{2}{3}$

- (c) $\frac{15}{17} \div \frac{35}{51}$ (f) $4 \div \frac{2}{3}$
- 2. 4 is what part of 12?
- 3. 2/5 is what part of 3/10?

Answer: 1. (a) 3/4 (b) 3/5 (c) 9/7 (d) 12 (e) 2 1/4 (f) 6 2. 1/3 3. 1 1/3

Section 13: Complex Fractions

36. Complex fractions are reduced to simple fractions by division.

EXAMPLE: Reduce
$$\frac{1\frac{1}{4}}{2\frac{1}{3}}$$
 to a simple fraction.
 $\frac{1\frac{1}{4}}{2\frac{1}{3}} = 1\frac{1}{4} \div 2\frac{1}{3} = \frac{5}{4} \div \frac{7}{3} = \frac{5}{4} \times \frac{3}{7} = \frac{15}{28}$

37. When numerators and denominators are complex, we compute them separately first.

EXAMPLE: Reduce
$$\frac{\frac{5}{7} - \frac{4}{21}}{\frac{11}{21} + \frac{3}{14}}$$
Numerator = $\frac{5}{7} - \frac{4}{21}$ = $\frac{15 - 4}{21}$ = $\frac{11}{21}$
Denominator = $\frac{11}{21} + \frac{3}{14}$ = $\frac{22 + 9}{42}$ = $\frac{31}{42}$

$$\frac{\text{Numerator}}{\text{Denominator}}$$
 = $\frac{\frac{11}{21}}{\frac{31}{42}}$ = $\frac{11}{21} \div \frac{31}{42}$ = $\frac{11}{1247} \times \frac{42^2}{31}$ = $\frac{22}{31}$

© EXERCISE

Reduce the following.

(a)
$$\frac{\frac{7}{8} + \frac{11}{12}}{1\frac{1}{16} - \frac{1}{6}}$$
 (b) $\frac{\left(8\frac{2}{5} \div 2\frac{1}{10}\right) - \left(\frac{6}{7} \times 2\frac{11}{12}\right)}{\left(1\frac{1}{4} \times \frac{2}{3}\right) + \left(1\frac{5}{9} \div 2\frac{1}{3}\right)}$

Answer: (a) 2 (b) 1

© L2 Lesson Plan 4: Check your Understanding

- 1. How does inexact division lead to fractions?
- 2. Why are like fractions easy to add?
- 3. Why is it necessary to simplify a fraction after addition and subtraction?
- 4. How do improper fractions come about?
- 5. What is a mixed number?
- 6. How do you convert unlike fractions to like fractions?
- 7. What is a least common multiple?
- 8. Why does the unit fraction get smaller as the denominator gets bigger?
- 9. Why is it easy to multiply and divide fractions?
- **10. What is a reciprocal?**
- 11. What is the key to resolving complex fractions?

Check your answers against the answers given below.

Answer:

- 1) When you divide the remainder (a number less than the divisor) by the divisor, you get a measure less than one. We call this measure a fraction.
- 2) Like fractions are easy to add because they are multiples of the same unit fraction.
- 3) Simplifying a fraction reduces them to their standard form, which is easier to compare.
- 4) Improper fractions come about from addition of proper fractions.
- 5) A number and a proper fraction put together form a mixed number.
- 6) By generating equivalent fractions whose denominators are the same.
- 7) It is the smallest common multiple of two or more denominators.
- 8) Because the more parts you cut something into, the smaller is each part.
- 9) Because fractions are made of multiplications and divisions.
- 10) A fraction flipped over becomes its reciprocal.
- 11) Resolve the fraction one part at a time from inside out.