

LEAST COMMON MULTIPLE

To convert 'unlike fractions' into equivalent 'like fractions' one requires the least common multiple of the unlike denominators.

FACT 1: The product of denominators provides a common multiple.

A common multiple of 10 and 15 is $10 \times 15 = 150$.

150 is a multiple of 10.

150 is also a multiple of 15

FACT 2: The least common multiple (LCM) is the smallest common multiple of the denominators.

150 is not the least common multiple of 10 and 15.

Multiples of 10 are: 10, 20, **30** ...

Multiples of 15 are: 15, **30** ...

Thus, the least common multiple of 10 and 15 is **30**.

FACT 3: We obtain the LCM by eliminating any repeat occurrence of a common factor from the product of denominators.

One repeat occurrence of the common factor '5' is eliminated to get the LCM.

$$\begin{array}{rcl} \text{Product} & = & 10 \times 15 = (2 \times 5) \times (3 \times 5) = 150 \\ \text{Least Common Multiple} & = & (2 \times 5) \times (3 \times \cancel{5}) = 30 \end{array}$$

FACT 4: We may eliminate the repeat occurrence of common factor by applying side by side division to the denominators as follows.

We divide the denominators by common factor. The LCM is the product of the common factor with the remaining factors in the bottom row.

$$\begin{array}{r} 5 \mid \underline{10, \quad 15} \\ \quad \quad \quad 2, \quad 3 \\ \text{LCM} \quad = \quad 5 \times 2 \times 3 \quad = \quad 30 \end{array} \quad \text{(Divide by the common factor 5)}$$

Find the LCM of 42 and 63.

$$\begin{array}{r} 7 \mid \underline{42, \quad 63} \quad (7 \text{ is a common factor}) \\ 3 \mid \underline{6, \quad 9} \quad (3 \text{ is a common factor}) \\ \quad \quad \quad 2, \quad 3 \quad (\text{There are no more common factors}) \\ \text{LCM} \quad = \quad 7 \times 3 \times 2 \times 3 \quad = \quad 126 \end{array}$$

FACT 5: For more than two denominators, a common prime factor to any two of the denominators may be taken out as follows.

Find the LCM of 9, 14 and 21.

$$\begin{array}{r}
 3 | \underline{9, \quad 14, \quad 21} \quad (3 \text{ is a prime factor common to 9 and 21, bring 14 down as-is}) \\
 7 | \underline{3, \quad 14, \quad 7} \quad (7 \text{ is a prime factor common to 14 and 7, bring 3 down as-is}) \\
 \quad \quad \quad 3, \quad 2, \quad 1 \quad (\text{No prime factor is common to any two of these numbers})
 \end{array}$$

$$\text{LCM} = 3 \times 7 \times 3 \times 2 \times 1 = 126$$

FACT 6: We use LCM is the common denominator of the equivalent “like” fractions.

To compare $\frac{7}{10}$ to $\frac{11}{15}$, we compute the LCM of 10 and 15 as 30 (see FACT 4).

$$\begin{array}{rcl}
 \frac{7}{10} = \frac{7 \times 3}{10 \times 3} = \frac{21}{30} \quad \text{and} \quad \frac{11}{15} = \frac{11 \times 2}{15 \times 2} = \frac{22}{30} \\
 \text{Since } \frac{21}{30} < \frac{22}{30}, \text{ therefore } \frac{7}{10} < \frac{11}{15}
 \end{array}$$

1. Find the LCM (Least Common Multiple) of the following set of numbers:

(a) 4 and 9 (b) 6 and 9 (c) 14 and 42 (d) 36 and 60
 (e) 6, 15 and 18 (f) 6, 13 and 26 (g) 26, 33, 39 and 44

Answer: (a) 36 (b) 18 (c) 42 (d) 180 (e) 90 (f) 78 (g) 1716

2. Use to LCM to find the equivalent like fractions for the following pairs of fractions.

$$\begin{array}{llll}
 \text{(a)} \frac{3}{5}, \frac{3}{10} & \text{(d)} \frac{5}{9}, \frac{7}{12} & \text{(g)} \frac{7}{15}, \frac{11}{25} & \text{(j)} \frac{9}{14}, \frac{11}{21} \\
 \text{(b)} \frac{5}{6}, \frac{8}{9} & \text{(e)} \frac{3}{10}, \frac{4}{15} & \text{(h)} \frac{1}{6}, \frac{1}{8} & \text{(k)} \frac{19}{24}, \frac{11}{16} \\
 \text{(c)} \frac{3}{4}, \frac{1}{6} & \text{(f)} \frac{3}{8}, \frac{5}{12} & \text{(i)} \frac{5}{9}, \frac{7}{15} & \text{(l)} \frac{13}{20}, \frac{11}{15}
 \end{array}$$

Answer: (a) 6/10, 3/10 (b) 15/18, 16/18 (c) 9/12, 2/12 (d) 20/36, 21/36
 (e) 9/30, 8/30 (f) 9/24, 10/24 (g) 35/75, 33/75 (h) 4/24, 3/24
 (i) 25/45, 21/45 (j) 27/42, 22/42 (k) 38/48, 33/48 (l) 39/60, 44/60

End of Lesson