Category Archives: Physics Book

Comments on Matter

Drop_closeup

Reference: Disturbance Theory

.

Matter – Wikipedia

In the classical physics observed in everyday life, matter is any substance that has mass and takes up space by having volume. This includes atoms and anything made up of these, but not other energy phenomena or waves such as light or sound. More generally, however, in (modern) physics, matter is not a fundamental concept because a universal definition of it is elusive; for example, the elementary constituents of atoms may be point particles, each having no volume individually.

Matter represents substance. Substance is something that can be felt and experienced. It is the essential aspect of any interaction. Without substance there can be no interaction, feeling and experience. Matter is one aspect of substance. The other aspect is field. An interface occurs between field and matter within an atom. In the atom we observe the field increasing in frequency toward the center, where it ends up as matter with mass.

Space is a manifestation of the extension property of field and matter. Without field and matter there is no space. The gaps between material objects are filled with gaseous matter and field. A vacuum is not entirely empty even when there are no atoms and molecules of gaseous material in it. There is still field in that vacuum for space to appear.

The idea that the fundamental constituents of atoms may be point particles is a mathematical conjecture. In reality, matter in atom reduces to field. The “volume” of matter reduces to cycles of field.

All the everyday objects that we can bump into, touch or squeeze are ultimately composed of atoms. This ordinary atomic matter is in turn made up of interacting subatomic particles—usually a nucleus of protons and neutrons, and a cloud of orbiting electrons. Typically, science considers these composite particles matter because they have both rest mass and volume. By contrast, massless particles, such as photons, are not considered matter, because they have neither rest mass nor volume. However, not all particles with rest mass have a classical volume, since fundamental particles such as quarks and leptons (sometimes equated with matter) are considered “point particles” with no effective size or volume. Nevertheless, quarks and leptons together make up “ordinary matter”, and their interactions contribute to the effective volume of the composite particles that make up ordinary matter.

Matter has shaped science’s viewpoint of reality. Even when field is discovered as a more basic substance, Science still uses matter as its reference point. This has led to considerable confusion in theoretical physics, which is now taken over by increasingly compartmentalized mathematical theories of Newton, Einstein and Quantum Mechanics.

Atom is not made up of point particles, but of field that is increasing in frequency toward the center of the atom. The “point particles” are high frequency regions of the field. The cycles of very high frequencies get compacted and appear as mass. Thus we have protons and neutron as regions of very high frequency and compactness at the core of the atom. The electrons are regions of relatively lower frequency and compactness that surround the nucleus of the atom.

Rest Mass is best understood as the inertia of a “particle”. Volume is best understood in terms of the cycles that make up the “particle”. Photons may be massless, but they are not inertia-less. They may not be matter but they are made up of cycles, which is the substance of field. Science, with its fixation on matter tries to evaluate field properties in terms of classical material properties of mass and volume. It refuses to go for a deeper understanding in terms of inertia and cycles. “Particles” such as quarks and leptons are mathematical conjectures that have not been encountered in reality.

Matter exists in states (or phases): the classical solid, liquid, and gas; as well as the more exotic plasma, Bose–Einstein condensates, fermionic condensates, and quark–gluon plasma.

These states of matter are essentially hybrids of field and matter.

For much of the history of the natural sciences people have contemplated the exact nature of matter. The idea that matter was built of discrete building blocks, the so-called particulate theory of matter, was first put forward by the Greek philosophers Leucippus (~490 BC) and Democritus (~470–380 BC).

Matter has been contemplated upon since the beginning of human consciousness.

.

Comments on Rest Mass

rest mass

Reference: Disturbance Theory

.

Rest Mass – Wikipedia

The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is that portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, it is a characteristic of the system’s total energy and momentum that is the same in all frames of reference related by Lorentz transformations. If a center of momentum frame exists for the system, then the invariant mass of a system is equal to its total mass in that “rest frame”. In other reference frames, where the system’s momentum is nonzero, the total mass (a.k.a. relativistic mass) of the system is greater than the invariant mass, but the invariant mass remains unchanged.

Due to mass-energy equivalence, the rest energy of the system is simply the invariant mass times the speed of light squared. Similarly, the total energy of the system is its total (relativistic) mass times the speed of light squared.

The word “rest” means that mass is not being pushed through the surrounding field. The surrounding field is a continuation of mass. When the mass is pushed through the surrounding field there is the resistance of inertia and acceleration. When there is no manifestation of acceleration the mass is “at rest”. A mass moving at uniform velocity is “rest mass”. When a mass is accelerating, there is force and energy in addition to the mass. This may be looked upon as “equivalent additional mass”.

The Lorentz transformations look at field from the viewpoint of matter and gives it a “mass” that is equivalent to its energy.

Systems whose four-momentum is a null vector (for example a single photon or many photons moving in exactly the same direction) have zero invariant mass, and are referred to as massless. A physical object or particle moving faster than the speed of light would have space-like four-momenta (such as the hypothesized tachyon), and these do not appear to exist. Any time-like four-momentum possesses a reference frame where the momentum (3-dimensional) is zero, which is a center of momentum frame. In this case, invariant mass is positive and is referred to as the rest mass.

A field is defined as having cycles and not mass (tight cycles at the upper end of the electromagnetic scale). Therefore, a field is massless but not “cycle-less” or “inertia-less”.  To be able to move faster than light, a particle must have less inertia than a photon. The above description in terms of “four-momentum” is part of a mathematical theory.

If objects within a system are in relative motion, then the invariant mass of the whole system will differ from the sum of the objects’ rest masses. This is also equal to the total energy of the system divided by c2. See mass–energy equivalence for a discussion of definitions of mass. Since the mass of systems must be measured with a weight or mass scale in a center of momentum frame in which the entire system has zero momentum, such a scale always measures the system’s invariant mass. For example, a scale would measure the kinetic energy of the molecules in a bottle of gas to be part of invariant mass of the bottle, and thus also its rest mass. The same is true for massless particles in such system, which add invariant mass and also rest mass to systems, according to their energy.

Here the definition of “invariant” or rest mass is based on a center of momentum frame. An absolute definition of “rest mass” is possible only from the reference point of zero inertia.

For an isolated massive system, the center of mass of the system moves in a straight line with a steady sub-luminal velocity (with a velocity depending on the reference frame used to view it). Thus, an observer can always be placed to move along with it. In this frame, which is the center of momentum frame, the total momentum is zero, and the system as a whole may be thought of as being “at rest” if it is a bound system (like a bottle of gas). In this frame, which exists under these assumptions, the invariant mass of the system is equal to the total system energy (in the zero-momentum frame) divided by c2. This total energy in the center of momentum frame, is the minimum energy which the system may be observed to have, when seen by various observers from various inertial frames.

An isolated massive system moving at uniform velocity has zero acceleration same as a system at rest.  This is the center of momentum frame. The uniform velocity is not relevant because it is based on an arbitrary reference frame.

Note that for reasons above, such a rest frame does not exist for single photons, or rays of light moving in one direction. When two or more photons move in different directions, however, a center of mass frame (or “rest frame” if the system is bound) exists. Thus, the mass of a system of several photons moving in different directions is positive, which means that an invariant mass exists for this system even though it does not exist for each photon.

The “rest mass” basically boils down to a measure of INERTIA in the reference frame of Emptiness, which provides the reference point of zero inertia.

.

Comments on Mass

Mass

Reference: Disturbance Theory

.

Mass – Wikipedia

Mass is both a property of a physical body and a measure of its resistance to acceleration (a change in its state of motion) when a net force is applied. It also determines the strength of its mutual gravitational attraction to other bodies. The basic SI unit of mass is the kilogram (kg).

Mass is the inertial property of matter [see Comments on Inertia]. It manifests in very high frequency regions of the field, where cycles are squeezed very tightly together. The greater is the mass the higher is the frequency gradient with respect to the surrounding field. This frequency gradient acts as force during interactions.

In physics, mass is not the same as weight, even though mass is often determined by measuring the object’s weight using a spring scale, rather than balance scale comparing it directly with known masses. An object on the Moon would weigh less than it does on Earth because of the lower gravity, but it would still have the same mass. This is because weight is a force, while mass is the property that (along with gravity) determines the strength of this force.

Mass is the tightness of cycles at very high frequencies. Weight appears when the frequency gradient of mass interacts.

In Newtonian physics, mass can be generalized as the amount of matter in an object. However, at very high speeds, special relativity states that the kinetic energy of its motion becomes a significant additional source of mass. Thus, any stationary body having mass has an equivalent amount of energy, and all forms of energy resist acceleration by a force and have gravitational attraction. In modern physics, matter is not a fundamental concept because its definition has proven elusive.

Very high speeds are meaningless if the associated acceleration is zero. They have meaning only when there is acceleration or deceleration during interactions. This little fact modifies the theory of relativity.

There are several distinct phenomena which can be used to measure mass. Although some theorists have speculated that some of these phenomena could be independent of each other, current experiments have found no difference in results regardless of how it is measured:

  • Inertial mass measures an object’s resistance to being accelerated by a force (represented by the relationship F = ma).

During acceleration, matter moves through the surrounding field. The interaction of its frequency gradient with the surrounding field appears as the “resistance” called inertia. This “resistance” is equal to the force generating the acceleration. The ratio of force to acceleration provides a measure of inertial mass.

  • Active gravitational mass measures the gravitational force exerted by an object.

The gravitational force occurs between two material objects separated by field. This force is manifestation of the frequency gradients of masses with the surrounding field. Newton’s formula for gravitation then provides a measure of gravitational mass.

  • Passive gravitational mass measures the gravitational force exerted on an object in a known gravitational field.

Gravitational force is essentially a measure of the frequency gradient between the mass region and the surrounding field.

The mass of an object determines its acceleration in the presence of an applied force. The inertia and the inertial mass describe the same properties of physical bodies at the qualitative and quantitative level respectively, by other words, the mass quantitatively describes the inertia. According to Newton’s second law of motion, if a body of fixed mass m is subjected to a single force F, its acceleration a is given by F/m. A body’s mass also determines the degree to which it generates or is affected by a gravitational field. If a first body of mass mA is placed at a distance r (center of mass to center of mass) from a second body of mass mB, each body is subject to an attractive force Fg = GmAmB/r2, where G = 6.67×10−11 N kg−2 m2 is the “universal gravitational constant”. This is sometimes referred to as gravitational mass. Repeated experiments since the 17th century have demonstrated that inertial and gravitational mass are identical; since 1915, this observation has been entailed a priori in the equivalence principle of general relativity.

Mass exists in a region of the field because of the tightness of the very high frequency cycles. The frequency gradient of this mass with the surrounding low frequency field determines the force required to move it through the field. This is perceived as inertia.

There is definite relationship between two masses and the relative frequency gradient, which determines the gravitational force between them. The distance between them is part of that combined frequency gradient.

.

Comments on Charge carrier

electric-field

Reference: Disturbance Theory

.

Charge carrier – Wikipedia

In physics, a charge carrier is a particle free to move, carrying an electric charge, especially the particles that carry electric charges in electrical conductors. Examples are electrons, ions and holes. In a conducting medium, an electric field can exert force on these free particles, causing a net motion of the particles through the medium; this is what constitutes an electric current.

A charge shall surround the particle that carries it. An electron is an eddy type configuration within the electromagnetic field. Ions are atoms or molecules that either hold extra charge, or have lost some charge. Holes are lower frequency regions (sinks) in the electromagnetic field. These “particles” are forced into motion by the difference in frequencies of the field. Such particles maintain their configuration and do not merge into surrounding field.

In different conducting media, different particles serve to carry charge:

  • In metals, the charge carriers are electrons. One or two of the valence electrons from each atom is able to move about freely within the crystal structure of the metal. The free electrons are referred to as conduction electrons, and the cloud of free electrons is called a Fermi gas.

In metals, the charges that generally belong to atoms, detach and move relatively freely within the lattice of atoms in the metal. These charges move like eddies at a higher frequency.

  • In electrolytes, such as salt water, the charge carriers are ions, which are atoms or molecules that have gained or lost electrons so they are electrically charged. Atoms that have gained electrons so they are negatively charged are called anions, atoms that have lost electrons so they are positively charged are called cations. Cations and anions of the dissociated liquid also serve as charge carriers in melted ionic solids (see e.g. the Hall–Héroult process for an example of electrolysis of a melted ionic solid). Proton conductors are electrolytic conductors employing positive hydrogen ions as carriers.

In electrolytes, parts of molecules become loose from each other and the frequency gradients become stretched. So the positive and negative charges appear far from each other and more visible.

  • In a plasma, an electrically charged gas which is found in electric arcs through air, neon signs, and the sun and stars, the electrons and cations of ionized gas act as charge carriers.

In plasma, the mechanism is the same as above except that the electromagnetic field is arranged on a different scale.

  • In a vacuum, free electrons can act as charge carriers. In the electronic component known as the vacuum tube (also called valve), the mobile electron cloud is generated by a heated metal cathode, by a process called thermionic emission. When an electric field is applied strong enough to draw the electrons into a beam, this may be referred to as a cathode ray, and is the basis of the cathode ray tube display widely used in televisions and computer monitors until the 2000’s.

The frequency modulation within a field can control the collection and motion of charge.

  • In semiconductors (the material used to make electronic components like transistors and integrated circuits), in addition to electrons, the travelling vacancies in the valence-band electron population (called “holes”), act as mobile positive charges and are treated as charge carriers. Electrons and holes are the charge carriers in semiconductors.

The “holes” are like low frequency sinks in the electromagnetic field. These charges may move like eddies at a lower frequency.

It can be seen that in some conductors, such as ionic solutions and plasmas, there are both positive and negative charge carriers, so an electric current in them consists of the two polarities of carrier moving in opposite directions. In other conductors, such as metals, there are only charge carriers of one polarity, so an electric current in them just consists of charge carriers moving in one direction.

The charge carrier basically carries a stable configuration of frequency gradient.

.

Comments on Electric charge

Electron
Reference: Disturbance Theory

.

Electric charge – Wikipedia

Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. There are two types of electric charges: positive and negative (commonly carried by protons and electrons respectively). Like charges repel and unlike attract. An absence of net charge is referred to as neutral. An object is negatively charged if it has an excess of electrons, and is otherwise positively charged or uncharged. The SI derived unit of electric charge is the coulomb (C). In electrical engineering, it is also common to use the ampere-hour (Ah), and, in chemistry, it is common to use the elementary charge (e) as a unit. The symbol Q often denotes charge. Early knowledge of how charged substances interact is now called classical electrodynamics, and is still accurate for problems that don’t require consideration of quantum effects.

An electric charge seems to be an eddy in an electromagnetic field that has a higher frequency compared to the surrounding field due to its rapid rotation. Dimensionally, the charge is same as mass. It has lesser frequency than mass.

NOTE: Per dimensional analysis provided by Maxwell, a charge has same dimensional characteristics as mass.

[M] = [Q] = [L3-2]

[L3-2] amounts to “area x acceleration”, which may be interpreted as a two dimensional electromagnetic wave front propagating in the third dimension. Maybe such a wavefront is responsible for the production of light, charge and mass.

The two types of electric charges are at the opposite ends of a frequency gradient. The negative charge forms the higher frequency eddy. It is therefore more concentrated and appears as a particle. The positive charge is the immediately surrounding field of lower frequency. The frequency gradient between negative and positive charge acts as an attractive force. Two similar frequency gradients repel each other.

Absence of net charge means there is no net frequency gradient.

The electric charge is a fundamental conserved property of some subatomic particles, which determines their electromagnetic interaction. Electrically charged matter is influenced by, and produces, electromagnetic fields. The interaction between a moving charge and an electromagnetic field is the source of the electromagnetic force, which is one of the four fundamental forces (See also: magnetic field).

Charge is part of the makeup of a subatomic particle. It is conserved like mass is conserved. The charge does not produce the electromagnetic field. The charge is an eddy within the electromagnetic field. The electromagnetic force is the frequency gradient in the electromagnetic field.

Twentieth-century experiments demonstrated that electric charge is quantized; that is, it comes in integer multiples of individual small units called the elementary charge, e, approximately equal to 1.602×10−19 coulombs (except for particles called quarks, which have charges that are integer multiples of (1/3) e). The proton has a charge of +e, and the electron has a charge of −e. The study of charged particles, and how their interactions are mediated by photons, is called quantum electrodynamics.

Electric charge is represented by the electron. The electron is an eddy in the electromagnetic field that has a stable configuration. The charge is quantized in the form of electrons. Quarks are theoretical as they have not been observed so far.

.